Home > Press > How buckyballs hurt cells
Abstract:
Curious soccer ball-shaped molecules able to invade cell membranes, according to new study of carbon-60 toxicity
A new study into the potential health hazards of the revolutionary nano-sized particles known as ‘buckyballs' predicts that the molecules are easily absorbed into animal cells, providing a possible explanation for how the molecules could be toxic to humans and other organisms.
Using computer simulations, University of Calgary biochemist Peter Tieleman, post-doctoral fellow Luca Monticelli and colleagues modeled the interaction between carbon-60 molecules and cell membranes and found that the particles are able to enter cells by permeating their membranes without causing mechanical damage. Their results are published in the current Advance Online Publication of Nature Nanotechnology, the world's leading nanotechnology journal.
"Buckyballs are already being made on a commercial scale for use in coatings and materials but we have not determined their toxicity," said Tieleman, a Senior Scholar of the Alberta Heritage Foundation for Medical Research who specializes in membrane biophysics and biocomputing. "There are studies showing that they can cross the blood-brain barrier and alter cell functions, which raises a lot of questions about their toxicity and what impact they may have if released into the environment."
Tieleman's team used the high-powered computing resources of WestGrid, a partnership between 14 Western Canadian institutions, to run some of the cell behaviour simulations. The resulting model showed that buckyball particles are able to dissolve in cell membranes, pass into cells and re-form particles on the other side where they can cause damage to cells.
Spherical carbon-60 molecules were discovered in 1985, leading to the Nobel Prize in physics for researchers from the University of Sussex and Rice University who named the round, hollow molecules Buckminsterfullerene after renowned American architect Richard Buckminster Fuller, the inventor of the geodesic dome.
Popularly known as buckyballs, carbon-60 molecules form naturally in minute quantities under extreme conditions such as lightning strikes. They can also be produced artificially as spheres or oblong-shaped balls, known as fullerenes, and can be used to produce hollow fibers known as carbon nanotubes. Both substances are considered to be promising materials in the field of nanotechnology because of their incredible strength and heat resistance. Potential applications include the production of industrial materials, drug delivery systems, fuel cells and even cosmetics.
In recent years, much research has focused on the potential health and environmental impacts of buckyballs and carbon nanotubes. Fullerenes have been shown to cause brain damage in fish and inhaling carbon nanotubes results in lung damage similar to that caused by asbestos.
"Buckyballs commonly form into clumps that could easily be inhaled by a person as dust particles," Tieleman said. "How they enter cells and cause damage is still poorly understood but our model shows a possible mechanism for how this might occur."
The paper "Computer simulation study of fullerene translocation through lipid membranes" by Jirasak Wong-Ekkabut, Svetlana Baoukina, Wannapong Triampo, I-Ming Tang, D. Peter Tieleman and Luca Monticelli is available in the Advance Online Publication of Nature Nanotechnology at: www.nature.com/nnano/index.html
For more information about the WestGrid High Performance Computing Consortium, visit: www.westgrid.ca
####
About University of Calgary
The University of Calgary is ranked top 10 in Canada for research income, fundraising, endowment, research competitions and national awards.
For more information, please click here
Contacts:
Grady Semmens
403-220-7722
Copyright © University of Calgary
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Safety-Nanoparticles/Risk management
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||