Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ulster Scientists Develop DNA Biosensor Technology

Scientists Dr Tony Byrne, Professor Pascal Mailley and Dr Patrick Lemoine are collaborating on developing ground-breaking biosensors
Scientists Dr Tony Byrne, Professor Pascal Mailley and Dr Patrick Lemoine are collaborating on developing ground-breaking biosensors

Abstract:
Scientists at the University of Ulster are using nanotechnology - highly miniaturised technology - to build new DNA biosensors which could be used in identifying genetic diseases, cancer research, identification of dangerous micro-organisms, and forensic science.

Ulster Scientists Develop DNA Biosensor Technology

Belfast, Ireland | Posted on May 21st, 2008

Dr Patrick Lemoine and Dr Tony Byrne from the School of Electrical and Mechanical Engineering at Ulster have teamed up with French biosensor expert, Professor Pascal Mailley from the CEA Grenoble research facility for the project.

The collaboration has been facilitated by a research grant from the Royal Society.

The aim of the project is to devise a DNA biosensor using new nanoscale fabrication techniques. This means manipulating engineering materials which are one thousand times smaller than the width of a human hair.

The Nanotechnology and Integrated BioEngineering Centre (NIBEC) at Ulster has state-of-the-art facilities for nanomaterials research as well as the mix of disciplinary expertise - physics, chemistry, biology and engineering, required for such projects.

Man-made biosensors are usually small hand-held devices costing a few pounds, which can replace laboratory systems costing thousands of pounds. Some are already commercially available in pharmacies, such as blood/sugar measurement devices essential for diabetics.

What is not available is an equivalent biosensor to detect DNA - the long chain molecule hidden in human cells which holds the key to life and which provides an unique code for every individual on earth.

Such a biosensor would present enormous opportunities. For example, DNA sequencing is necessary for the identification and treatment of genetic diseases, for cancer research, for the identification of dangerous micro-organisms or for forensic science."

Dr Lemoine says: "The key idea of the proposal is to use specific techniques called ‘self-assembly' and ‘nano-patterning' to create arrays containing millions of pixels with very high surface areas.

This means that more DNA fragments can be immobilised in smaller geometric areas, typically a few millimetres square. When the ‘chip' is exposed to a sample of unknown DNA, the complementary strands join up, revealing the sequence of the unknown DNA.

This technology is not only applicable to DNA chips but might allow the production of biosensors using a wide range of bio-molecules which may be used as miniature implantable sensors for monitoring conditions within the body.

For example, the development of an artificial pancreas, which could both measure glucose and control insulin delivery, would be of major benefit to diabetics.

####

About Nanotechnology and Integrated BioEngineering Centre
NIBEC - the Nanotechnology and Integrated BioEngineering Centre is a well established world-class research complex at the University of Ulster's Jordanstown campus. NIBEC represents a consolidation of eight advanced functional materials research groups, dealing with thin-film material types used in electronics, photonics, nanotechnology, sensors, MEMS, optical, environmental, magnetic and bio-material devices.

The £10M purpose-built facilities house some of the most sophisticated nano-fabrication, biological and characterisation equipment in the world. Strong international collaborations have been developed and large infrastructural and project funding has been a highlight of this rapidly growing research area. The centre hosts major core research initiatives such as MATCH (EPSRC National Centre); CACR (UU and Royal Victoria Hospital); NanotecNI (UU and QUB); and also the team have developed formal collaborations with numerous world-wide Institutions and Industry.

NIBEC is staffed by an internationally recognised team of researchers and academics working predominantly at the interface of bioengineering and nanotechnology. Technology transfer is a key objective and a number of successful spin-out companies have emerged from NIBEC in recent years, the most successful of these being Heartscape, HeartSine Technology and Sensors Technology and Devices Ltd (ST&D).

For more information, please click here

Contacts:
Press Office
Communication and Development
Tel:(028) 9036 6178
Email:

Copyright © University of Ulster

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project