Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Chemists measure chilli sauce hotness with nanotubes

May 6th, 2008

Chemists measure chilli sauce hotness with nanotubes

Abstract:
If you can't stand the heat, get out of the kitchen and into the lab - chemists can now use carbon nanotubes to judge the heat of chilli sauces. The technology might soon be available commercially as a cheap, disposable sensor for use in the food industry.

Richard Compton and his team at Oxford University, UK, have developed a sensitive technique to measure the levels of capsaicinoids, the substances that make chillies hot, in samples of chilli sauce. They report their findings in the Royal Society of Chemistry journal The Analyst.

The current industry procedure is to use a panel of taste-testers, and is highly subjective. Compton's new method unambiguously determines the precise amount of capsaicinoids, and is not only quicker and cheaper than taste-testers but more reliable for purposes of food standards; tests could be rapidly carried out on the production line.

They tested a range of chilli sauces, from the mild "Tabasco Green Pepper" sauce to "Mad Dog's Revenge", which sports an extensive health warning and liability disclaimer.

The well-established Scoville method - currently the industry standard - involves diluting a sample until five trained taste testers cannot detect any heat from the chilli. The number of dilutions is called the Scoville rating; the relatively mild Jalapeño ranges from around 2500-8000, whereas the hottest chilli in the world, the "Naga Jolokia", has a rating of 1000000.

High performance liquid chromatography (HPLC) can also be used, but this requires bulky, expensive equipment and detailed analysis of the capsaicinoids.

In Compton's method, the capsaicinoids are adsorbed onto multi-walled carbon nanotube (MWCNT) electrodes. The team measures the current change as the capsaicinoids are oxidised by an electrochemical reaction, and this reading can be translated into Scoville units.

Source:
innovations-report.de

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Food/Agriculture/Supplements

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project