Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Prof. David Kisailus Studies Engineering and Invention on the Half-shell

Local California invertebrates serve as the research models in the lab of Professor David Kisailus. Photo by Judy Chappell.
Local California invertebrates serve as the research models in the lab of Professor David Kisailus. Photo by Judy Chappell.

Abstract:
While some people trek to exotic, faraway locales to admire the beauty of coral reefs, at UCR, people can visit Bourns Hall

Prof. David Kisailus Studies Engineering and Invention on the Half-shell

RIVERSIDE, CA | Posted on May 1st, 2008

Marine snails, sea urchins, and other animals from the sea are teaching researchers in UC Riverside's Department of Chemical and Environmental Engineering how to make the world a better place.

Consider, for example, the possibilities of designing a lightweight armor that would protect U.S. soldiers in Iraq from Improvised Explosive Devices. Or, what flexible ceramics might offer industry. Or, how everyone could benefit from new ways of producing and storing energy.

Nature holds these secrets and the answers to the questions that Prof. David Kisailus's research group is learning how to ask. "My hope," Kisailus said, "is that we can truly learn from these organisms how to design, optimize, and synthesize engineering materials that display properties that we as engineers can only dream of."

Studying ocean animals daily as they grow seems a tough task for Inland Southern California scientists. Instead of commuting to the coast, the researchers have brought the oceans to UCR in a unique 500-gallon seawater system that dominates the Biomimetic and Nanostructured Materials Laboratory, offering homes for both coldwater (60 degrees Fahrenheit) and tropical (80 degrees Fahrenheit) species.

While some people trek to exotic, faraway locales to admire the beauty of coral reefs, at UCR, people simply can visit Bourns Hall to see a dramatic and authentic tropical coral reef ecosystem. Another showcase tank boasts a thriving coldwater marine population that includes California's red abalone (Haliotis rufescens), purple and brown sea urchins (Strongylocentrotus purpuratus and Lytechinus pictus), giant keyhole limpets (Megathura crenulata), several coral species (Balanophyllia elegans, Astrangia lajollaensis and Paracyathus stearnsi), along with numerous colonies of club-tipped corallimorpharians (Corynactis californica).

Other tanks hold animals for studies, while a series of separate small tanks host the crankier, more aggressive species or those with special dietary needs. The mother of all pump and filtration systems circulates and processes the water throughout, with total flow rates of nearly 10,000 gallons of seawater per hour, providing an environment like their natural habitat.

James Weaver, an invertebrate marine zoologist who works as a research associate with Kisailus, designed and built the elaborate tanks and filtration system, which includes a 6-foot-tall fluidized bioreactor. But to these researchers, the animals in the tanks are the true marvels in engineering. "We just utilize nature as our platform for inspiration," Kisailus said.

Kisailus first became excited about materials science while doing research lab work as an undergraduate at Drexel University. After earning his master's degree in Materials Science at the University of Florida, Kisailus did his Ph.D. work at University of California, Santa Barbara, where he met Weaver as a fellow graduate student.

The two dreamed then of someday combining Weaver's expertise in invertebrate zoology and Kisailus's in materials science. That dream has come true at UCR. "We are now constantly bouncing ideas off each other again and it seems as if there will never be a shortage of novel ideas," Kisailus said.

In their teamwork, Weaver is the guy who brings in animals with unique features, while Kisailus is the guy with the beaker. "James brings me knowledge of all these critters," Kisailus said, "And I say, let's look at how the abalone grows its shell. Maybe we can use a similar strategy to modify a nanostructure in a solar cell to make them more efficient."

Sea urchins synthesize flexible ceramics … and some marine sponges form fracture-resistant glass rods and fibers. "We look at these mineralizing skeletal systems and adapt the lessons learned from their study for the synthesis of real-life engineering," he said.

Consider red abalone, the largest of California's marine snails, with a large oval shell that coastal Native Americans once used as a shallow bowl. Inside the shell is mother-of-pearl, or nacre, a tough material that absorbs energy. Maybe, he said, the abalone can show scientists how to make a lightweight armor that is strong enough to protect American soldiers in Iraq from devastating IED attacks.

As the red abalone grows, it constructs its shell in the same way a new building goes up, girders first. In the case of the abalone shell, however, the girders are composed of organic material. Then it fills in the areas between the girders with the mineral component, resulting in the formation of a very tough layered nano-composite. "It's all in a very predefined orientation, all controlled by genetics," Kisailus said.

The scientists are trying to mimic that precision, using beakers and simple chemistry to make materials with controlled size and shape. If they succeed, Kisailus sees a future with more efficient energy storage and conversion — and eventually, some solutions to the global energy crisis. "Imagine having a solar cell that can be inexpensive, flexible, and highly efficient," Kisailus said. "I believe many of the organisms we study hold the keys to solving these problems."

The sea tanks are drawing in a crowd of young researchers. "It was my co-op experiences and work as a researcher as an undergraduate at Drexel University that set me on this path to research and intrigued my imagination," Kisailus said. "Although I am a new professor, and have two graduate students, I am hiring many undergraduates to work in my lab and learn to connect the textbook to research. Right now I have 11 undergrads buzzing around in the lab and will probably hire a few more … many with outstanding potential coming from all walks of life. I hope to inspire them the way I have been and get them excited about biomimetics and materials science."

He also wants to invite area kids from kindergarten through high school to come tour the lab and see the drama and beauty of the marine tanks. It's his hope to inspire them to pursue a higher education. "They're the future," Kisailus said.

####

About University of California, Riverside
The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is projected to grow to 21,000 students by 2010. The campus is planning a medical school and already has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. With an annual statewide economic impact of nearly $1 billion, UCR is actively shaping the region's future. To learn more, visit www.ucr.edu or call (951) UCR-NEWS.

For more information, please click here

Contacts:
Kris Lovekin
Phone: 951.827.2495

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Events/Classes

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project