Home > Press > Silicon nanotubes for hydrogen storage in fuel cell vehicles
![]() |
Researchers report hydrogen storage by silicon nanotubes exceeds that of their carbon couterparts. Silicon could play a large role in the emergence of 'clean' hydrogen fuel cell vehicles. Courtesy of ornl.gov |
Abstract:
After powering the micro-electronics revolution, silicon could carve out an important new role in speeding the debut of ultra-clean fuel cell vehicles powered by hydrogen, researchers in China suggest. Their calculations show for the first time that silicon nanotubes can store hydrogen more efficiently than their carbon nanotube counterparts. The study will appear in the April 24 issue of ACS' Journal of Physical Chemistry C, a weekly publication.
Dapeng Cao and colleagues note that researchers have focused on the potential use of carbon nanotubes for storing hydrogen in fuel cell vehicles for years. Despite nanotubes' great promise, they have been unable to meet the hydrogen storage goals proposed by the U.S. Department of Energy for hydrogen fuel cell vehicles. A more efficient material for hydrogen storage is needed, scientists say.
In the study, Cao's group used powerful molecular modeling tools to compare the hydrogen storage capacities of newly developed silicon nanotubes to carbon nanotubes. They found that, in theory, silicon nanotubes can absorb hydrogen molecules more efficiently than carbon nanotubes under normal fuel cell operating conditions. The calculations pave the way for tests to determine whether silicon nanotubes can meet government standards for hydrogen storage, the scientists note. — MTS
####
For more information, please click here
Contacts:
Dapeng Cao, Ph.D.
Beijing University of Chemical Technology
Beijing, China
Phone: 86-10-64443254
Fax: 86-10-6442-7616
Copyright © American Chemical Society
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Automotive/Transportation
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Leading the charge to better batteries February 28th, 2025
Fuel Cells
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |