Home > Press > UD nanomineral research featured in ’Science’
Donald L. Sparks: "Atmospheric nanoparticles can travel long distances through wind currents....Do they have an impact on global climate change? How do they impact air quality and human health? We want to raise awareness of these particles beyond the scientific world.” |
Abstract:
Researchers at the University of Delaware, Virginia Polytechnic Institute and State University, Ohio State University, the University of Notre Dame, the University of Minnesota and the University of South Carolina are studying how the properties of mineral nanoparticles (a nanometer is equal to one billionth of a meter) change as a function of their size.
The March 21 issue of Science--the world's leading journal of original scientific research, global news, and commentary--features an invited review article about this research co-authored by Donald L. Sparks, S. Hallock du Pont Chair of Plant and Soil Sciences and the director of the Center for Critical Zone Research at UD.
The article, "Nanominerals, Mineral Nanoparticles, and Earth Systems," originated with a group convened by the National Science Foundation, the Nanogeosciences Working Group, which includes Sparks. The lead author, Michael F. Hochella Jr. of the Center for NanoBioEarth, Department of Geosciences at Virginia Tech, serves on the external advisory board for UD's Center for Critical Zone Research and the external advisory board for the Delaware Experimental Program to Stimulate Competitive Research (EPSCoR).
"NSF was seeking guidance on the frontier areas of research in regards to nanogeosciences and wanted to know what types of questions still needed to be answered as they develop funding priorities and opportunities," Sparks said.
"We know that there are lots of natural nanoparticles in the environment," Sparks said. "Here at UD, we often study particles in the soil that can be nanosized--for example, certain clay minerals, iron oxides, manganese oxides and how they react with metals and nutrients. Only in the last few years has nanoparticles research come to the forefront of the science world, with a push to understand the fate and reactivity of both natural and manufactured nanoparticles."
The research featured in the article looks at particles that are 10s of nanometers in size, the very smallest of the nanoparticles.
"The structure of the minerals changes as they get smaller," Sparks said. "Reactivity is affected and the rates of reaction of the nanoparticles with metals and microbes have been observed to be much faster than with larger particles. It raises questions that we don't yet have all of the answers to in regards to how these reaction rates affect the fate and transport of contaminants in the environment."
Researchers continue to study how nanoparticles and their changing properties have the potential to either positively or negatively affect environmental quality and human health. Nanoparticles are able to influence the movement of heavy metals, radionuclides and atmospheric particles. Of great interest to UD's Department of Plant and Soil Sciences is how nanoparticles influence the transport of metals and toxins in the soil.
"Atmospheric nanoparticles can travel long distances through wind currents," Sparks said. "We don't yet fully understand what these particles contain or what they may bind or bind to. Are they attached to other things, like microbes? Do they have an impact on global climate change? How do they impact air quality and human health? We want to raise awareness of these particles beyond the scientific world."
Nanoparticle research at UD spans many disciplines, ranging from environmental science and materials science to chemistry and engineering. One of the themes of the new Delaware EPSCoR proposal is the study of the interactions and transport of nanoparticles, as well as larger particles, with metals, microbes and nutrients.
The article can be viewed online at [www.sciencemag.org/cgi/content/full/319/5870/1631].
####
About University of Delaware
The University of Delaware has grown from its founding as a small private academy in 1743 to a major university. As one of the oldest land-grant institutions, as well as a sea-grant, space-grant and urban-grant institution, Delaware offers an impressive collection of educational resources. Undergraduates may choose to major in any one or more of over 100 academic majors. The University's distinguished faculty includes internationally known scientists, authors and teachers, who are committed to continuing the University of Delaware's tradition in providing one of the highest quality undergraduate educations available.
For more information, please click here
Contacts:
Office of Public Relations
The Academy Building,
105 East Main St.
Newark, DE 19716-2701
(302) 831-2792
Copyright © University of Delaware
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Safety-Nanoparticles/Risk management
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||