Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > IGERT Profile: Tania Chan

Tania Chan. Graduate student in the NanoBio IGERT program. Credit: Mary Spiro / JHU
Tania Chan. Graduate student in the NanoBio IGERT program. Credit: Mary Spiro / JHU

Abstract:
Tania Chan is a first year PhD student in materials science at Johns Hopkins University and member of the NanoBio IGERT with the Institute for NanoBioTechnology. IGERT stands for Integrative Graduate Education and Research Traineeship and is funded by the National Science Foundation.

IGERT Profile: Tania Chan

Baltimore, MD | Posted on April 4th, 2008

Working with Michael (Seungju) Yu, associate professor of materials science and engineering and INBT affiliated faculty member, Chan has synthesized a protein, called QK, which mimics VEGF, the natural growth factor responsible for new blood vessel growth. The QK will be paired with a synthetic peptide that mimics natural collagen—a protein found in connective tissues, bone, muscle and skin. This synthetic combination will be used to modify collagen scaffolds with the long term goal of controlling microvasculature formation in artificial tissue and wound healing.

Born in Hong Kong, Chan spent most of her childhood in Southern California. She graduated from the Massachusetts Institute of Technology in June 2007 with a B.S. in materials science and a minor in biomedical engineering. Chan is especially interested in biomaterials. "It's fascinating to me how we can make materials and put them into the human body to help a person heal and to regenerate tissue," Chan says.

Chan enjoys research. As a sophomore, she worked in MIT's bioengineering department, studying DNA mutation in yeast cells and its effects in colony formation and other project on DNA mutation in mice and its effects on colon tumors formation. As a junior, Chan worked at Harvard on a project on semiconductor nano-patterning, as well as separate project at MIT that examined different collagen scaffold processing techniques. Chan interned with Schlumberger, an oil field services company, and helped develop a swellable elastomer, now patent pending. After one semester as a visiting scholar at Oxford, she returned for her final semester to "work on developing a polymeric vaccine delivery vehicle," she adds. Chan presented her results at the Fall 2007 Materials Research Society meeting.

INBT's NanoBio IGERT has afforded Chan the opportunity to indulge what she calls her "endless pursuit of knowledge." When not in the lab, Chan loves to play and listen to music and is a classically trained pianist and singer.

####

About Institute for NanoBioTechnology
The Institute for NanoBioTechnology at Johns Hopkins University is revolutionizing health care by bringing together internationally renowned expertise in medicine, engineering, the sciences, and public health to create new knowledge and groundbreaking technologies.

INBT programs in research, education, outreach, and technology transfer are designed to foster the next wave of nanobiotechnology innovation.

Approximately 155 faculty are affiliated with INBT and are also members of the following Johns Hopkins institutions: Krieger School of Arts and Sciences, Whiting School of Engineering, School of Medicine, Bloomberg School of Public Health, and Applied Physics Laboratory.

For more information, please click here

Contacts:


* Institute for NanoBioTechnology
214 Maryland Hall
3400 North Charles Street
Baltimore, MD 21218

* Email:
* Phone: (410) 516-3423
* Fax: (410) 516-2355

Copyright © Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project