Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Superdense' coding gets denser

Photo by L. Brian Stauffer
Paul Kwiat, a John Bardeen Professor of Physics and Electrical and Computer Engineering, has broken the record for the most amount of information sent by a single photon.
Photo by L. Brian Stauffer
Paul Kwiat, a John Bardeen Professor of Physics and Electrical and Computer Engineering, has broken the record for the most amount of information sent by a single photon.

Abstract:
The record for the most amount of information sent by a single photon has been broken by researchers at the University of Illinois. Using the direction of "wiggling" and "twisting" of a pair of hyper-entangled photons, they have beaten a fundamental limit on the channel capacity for dense coding with linear optics.

'Superdense' coding gets denser

CHAMPAIGN, IL | Posted on March 27th, 2008

"Dense coding is arguably the protocol that launched the field of quantum communication," said Paul Kwiat, a John Bardeen Professor of Physics and Electrical and Computer Engineering. "Today, however, more than a decade after its initial experimental realization, channel capacity has remained fundamentally limited as conceived for photons using conventional linear elements."

In classical coding, a single photon will convey only one of two messages, or one bit of information. In dense coding, a single photon can convey one of four messages, or two bits of information.

"Dense coding is possible because the properties of photons can be linked to one another through a peculiar process called quantum entanglement," Kwiat said. "This bizarre coupling can link two photons, even if they are located on opposite sides of the galaxy."

Using linear elements, however, the standard protocol is fundamentally limited to convey only one of three messages, or 1.58 bits. The new experiment surpasses that threshold by employing pairs of photons entangled in more ways than one (hyper-entangled). As a result, additional information can be sent and correctly decoded to achieve the full power of dense coding.

Kwiat, graduate student Julio Barreiro and postdoctoral researcher Tzu-Chieh Wei (now at the University of Waterloo) describe their recent experiment in a paper accepted for publication in the journal Nature Physics, and posted on its Web site.

Through the process of spontaneous parametric down conversion in a pair of nonlinear crystals, the researchers first produce pairs of photons simultaneously entangled in polarization, or "wiggling" direction, and in orbital angular momentum, or "twisting" direction. They then encode a message in the polarization state by applying birefringent phase shifts with a pair of liquid crystals.

"While hyper-entanglement in spin and orbital angular momentum enables the transmission of two bits with a single photon," Barreiro said, "atmospheric turbulence can cause some of the quantum states to easily decohere, thus limiting their likely communication application to satellite-to-satellite transmissions."

####

About University of Illinois
At Illinois, research shapes the campus identity, stimulates classroom instruction and serves as a springboard for public engagement activities throughout the world. Opportunities abound for graduate students to develop independent projects and launch their own careers as researchers while working alongside faculty and assisting in their research. Illinois continues its long tradition of groundbreaking accomplishments with remarkable new discoveries and achievements that inspire and enrich the lives of people around the world.

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073


Paul Kwiat
217-333-9116

Copyright © University of Illinois

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Quantum Computing

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Quantum nanoscience

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project