Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers Use Magnetism to Target Cells to Animal Arteries

Magnetic nanoparticles loaded into endothelial cells show a red fluorescent glow on the struts of a steel stent.

Credit: The Children's Hospital of Philadelphia
Magnetic nanoparticles loaded into endothelial cells show a red fluorescent glow on the struts of a steel stent.
Credit: The Children's Hospital of Philadelphia

Abstract:
- Magnetically Guided Nanoparticles May Deliver Treatments to Human Organs -

Researchers Use Magnetism to Target Cells to Animal Arteries

PHILADELPHIA, PA | Posted on January 7th, 2008

Scientists have used magnetic fields and tiny iron-bearing particles to drive healthy cells to targeted sites in blood vessels. The research, done in animals, may lead to a new method of delivering cells and genes to repair injured or diseased organs in people.

The study team, led by Robert J. Levy, M.D., the William J. Rashkind Chair of Pediatric Cardiology at The Children's Hospital of Philadelphia, loaded endothelial cells, flat cells that line the inside of blood vessels, with nanoparticles, tiny spheres nanometers in diameter. The nanoparticles contained iron oxide.

Using an external, uniform magnetic field, Levy's team directed the cells into steel stents, small metal scaffolds that had been inserted into the carotid arteries of rats. The uniform magnetic field created "magnetic gradients," local regions of high magnetic force that magnetized both the nanoparticles and the stents, thus increasing the attraction between the particles and their target.

The study appears in the Proceedings of the National Academy of Sciences, published online on Jan. 7. Dr. Levy's group from Children's Hospital collaborated with engineers from Drexel University and Duke University.

"This is a novel strategy for delivering cells to targets in the body," said Levy, who added that previous researchers have pursued other, less successful approaches to introduce endothelial cells to diseased blood vessels, in the developing medical field of cell therapy.

Levy's team created nanoparticles, approximately 290 nanometers across, made of the biodegradable polymer, polylactic acid, and impregnated with iron oxide. (A nanometer is a millionth of a millimeter; in comparison to these nanoparticles, red blood cells are ten to 100 times larger.)

The researchers loaded the nanoparticles into endothelial cells, which had been genetically modified to produce a specific color that could be detected by an imaging system while the animals were alive. After introducing stainless steel stents into rats' carotid arteries, Levy's team used magnetic fields to steer the cells into the stents.

Patients with heart disease commonly receive metal stents in partially blocked blood vessels to improve blood flow, both by widening the vessels and delivering drugs. However, many stents fail over time as smooth muscle cells accumulate excessively on their surfaces and create new blockages. One goal of cell therapy is to introduce new endothelial cells to recoat stents with a smooth surface.

Furthermore, Levy adds, while drug-releasing stents currently provide benefits in treating diseased coronary arteries, they have proved far less effective in treating peripheral vascular disease, such as that occurring in patients with diabetes. In such cases, severe problems in blood circulation may force doctors to amputate a leg. In upcoming animal studies, Levy's team will use their delivery approach to deliver magnetic nanoparticles to peripheral arteries.

Future studies, Levy added, also will use cells derived from the animal itself, to avoid potential rejection problems that may occur with unmatched cells. The current study used unmatched cells, delivering bovine cells to rat arteries, but only over a 48-hour period, too brief for rejection to occur.

The current study builds on research published earlier this year by Levy and collaborators, in which they used magnetic fields and nanoparticles to deliver DNA to arterial muscle cells in culture. That research focused on a delivery system for gene therapy, while the current study represents cell therapy. Levy suggests future applications may combine both therapies, using endothelial cells to deliver beneficial genes to damaged arteries.

The delivery system, says Levy, might also be applied to other sites where physicians implant steel stents to deliver medication, such as the esophagus, bile ducts and lungs. Another potential use might be in orthopedic procedures, in which surgeons implant steel nails to stabilize fractured bones, or use steel screws to correct spinal abnormalities. In such cases, magnetized nanoparticles might deliver bone stem cells to strengthen bony structures.

"Magnetic fields produced by ordinary MRI machines could suffice to deliver cells to targets where they could promote healing, since MRI uses uniform fields, which are key to our targeting strategy," added Levy. "This method could become a powerful medical tool."

Financial support for the study came from the National Institutes of Health, the Nanotechnology Institute, and both the William J. Rashkind Endowment and Erin's Fund of The Children's Hospital of Philadelphia. Dr. Levy's co-authors were Ilia Fishbein, M.D., Michael Chorny, Ph.D., Ivan S. Alferiev, Ph.D., and Darryl Williams, of Children's Hospital; Boris Polyak, M.D., and Gary Friedman, Ph.D., of Drexel University; and Ben Yellen, Ph.D., of Duke University.

####

About The Children's Hospital of Philadelphia
The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking third in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 430-bed hospital recognition as a leading advocate for children and adolescents.

For more information, please click here

Contacts:
John Ascenzi
Children's Hospital of Philadelphia
+1-267-426-6055

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project