Home > News > Thermal Transistor: The World's Tiniest Refrigerator
January 2nd, 2008
Thermal Transistor: The World's Tiniest Refrigerator
Abstract:
Traditionally, heat and electronics don't agree. But physicists in Europe and Asia are beginning to see some signs of cooperation. A Finnish-Italian team has demonstrated that electrons in a specially designed transistor can carry away heat, making the device they built the smallest known refrigerator. Another team, from Singapore, has shown that heat can carry information in a transistor-like device, just like electrons do in conventional computers.
Researchers from the Helsinki University of Technology, in Finland, and the Scuola Normale Superiore in Pisa, Italy, have created a tiny transistor—resembling in structure if not in composition the field-effect transistors in ICs—that they call a single-electron refrigerator. Two superconducting electrodes are connected to a small micrometer-sized copper slab, about 2 mm long and 1/5 mm wide. These electrodes are analogous to the source and drain of a conventional transistor, except that they are electrically isolated from the copper by a thin layer of aluminum oxide. (Two extra electrodes are attached on both sides of the source and drain for measurement purposes.) Along the copper island is placed the "gate," an electrode that controls the flow of electrons through the copper slab.
Source:
spectrum.ieee.org
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |