Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Irradiated carbon makes for better electronics, say scientists

December 17th, 2007

Irradiated carbon makes for better electronics, say scientists

Abstract:
Scientists at the Weizmann Institute of Science, together with colleagues from the U.S., have implemented doping using UV light and electron beams in the field of molecular electronics. The research was done with particular application to electronic devices made of single layers of organic (carbon-based) molecules.

Such components might be inexpensive, biodegradable, versatile and easy to manipulate. The main problem with molecular electronics, however, is that the organic materials must first be made sufficiently pure and then, ways must be found to successfully dope these somewhat delicate systems. Professor David Cahen and postdoctoral fellow Oliver Seitz of the Weizmann Institute's Material and Interfaces Department, together with Ayelet Vilan and Hagai Cohen from the Chemical Research Support Unit and Professor Antoine Kahn from Princeton University succeeded in purifying the molecular layer to such an extent that the remaining impurities did not affect the system's electrical behavior. The scientists doped the 'clean' monolayers by irradiating the surface with ultraviolet light or weak electron beams, changing chemical bonds between the carbon atoms that make up the molecular layer. These bonds ultimately influenced electronic transport through the molecules. This achievement was described in the Journal of the American Chemical Society (JACS) recently. The researchers predict that this method may enable scientists and electronics engineers to substantially broaden the use of these organic monolayers in the field of nanoelectronics.

Source:
eetimes.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project