Home > Press > $1.1 million NSF grant to fund research in advanced light microscopy at UCLA
Abstract:
The National Science Foundation has awarded a $1.1 million Major Research Instrumentation grant for the Advanced Light Microscopy core laboratory at the California NanoSystems Institute at UCLA. The award will facilitate the acquisition of the first commercially available super-resolution stimulated emission depletion (STED) confocal laser scanning microscope for nanoscopic resolution of biological samples.
The device will be used by a multidisciplinary research team with expertise in physics, chemistry, imaging, genetics and molecular biology led by principal investigator Shimon Weiss, UCLA professor of chemistry and biochemistry, and co-principal investigators Michael Grunstein, UCLA professor of biological chemistry, and Dr. Laurent Bentolila, UCLA senior researcher in chemistry and biochemistry. The team will collaborate with Stefan W. Hell, director of the Max Planck Institute for Biophysical Chemistry in Germany.
Researchers will use the microscope to investigate molecular assemblies at the nanoscale — including deciphering the structure of chromatin and its packaging into chromosomes in the cell —and to study cell signaling, viral and bacterial infection pathways, neural plasticity and many other important biological questions. They will also develop a new family of STED probes based on semiconductor nanocrystals.
"We have assembled a group of multidisciplinary UCLA users who will significantly advance their research by making use of this instrument," said Weiss, who is also a member of the California NanoSystems Institute (CNSI) at UCLA.
Developed by Leica Microsystems, the microscope is uniquely designed for nanoscopic resolution of biological and artificial samples. Despite using regular lenses and visible light, the microscope is not limited by diffraction and diplays a x10 resolution improvement over conventional light microscopes.
STED microscopy provides an alternative to electron microscopy because it capitalizes on the well-established advantages of fluorescence microscopy — including sensitivity, molecular specificity, genetically encoded probes, live cells and ease of operation.
The STED concept relies on stimulated emission, coupled with smart optics, to sharpen the confocal excitation spot, resulting in more detailed, nanometer-resolved images. Bridging the gap between electron and diffraction-limited light microscopy, the STED microscope promises to be a powerful tool for unraveling the relationship between structure and function in cell biology.
The CNSI Advanced Light Microscopy/Spectroscopy shared facility currently provides training to more than 250 research students at the undergraduate, graduate and postdoctoral levels. The new microscope will be used in the education and training of students and researchers through a series of courses offered by the facility. The instrument will also be made available to a large network of researchers throughout Southern California and the United States.
Super-resolution STED microscopy holds great promise because it is expected to lead to significant new discoveries across the fields of biology, chemistry, materials sciences, engineering, medicine and physics.
"Super-resolution fluorescence microscopy will be decisive in solving long-lasting fundamental scientific questions which lie in this intermediate scale of tens of nanometers," said Bentolila, director of the Advanced Light Microscopy core lab at the CNSI.
Leica Microsystems is a leading global designer and producer of innovative high-tech precision optics systems for the analysis of microstructures. It is a market leader in the fields microscopy, confocal laser scanning microscopy, imaging systems, specimen preparation and medical equipment. The company manufactures a broad range of products for numerous applications requiring microscopic imaging, measurement and analysis. It also offers system solutions in the areas of biotechnology and medicine, as well as in the science of raw materials and industrial quality assurance. Comprising nine manufacturing facilities in seven countries, sales and service companies in 20 countries, and an international network of dealers, the company is represented in more than 100 countries. Its international headquarters are in Wetzlar, Germany.
The California NanoSystems Institute is a multidisciplinary research center at UCLA whose mission is to encourage university-industry collaboration and enable the rapid commercialization of discoveries in nanosystems. CNSI members include some of the world's preeminent scientists, and the work conducted at the institute represents world-class expertise in five targeted areas of nanosystems-related research: renewable energy; environmental nanotechnology and nanotoxicology; nanobiotechnology and biomaterials; nanomechanical and nanofluidic systems; and nanoelectronics, photonics and architectonics. For additional information on the institute, visit http://www.cnsi.ucla.edu .
####
About University of California - Los Angeles
UCLA is California's largest university, with an enrollment of nearly 37,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer more than 300 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Four alumni and five faculty have been awarded the Nobel Prize.
For more information, please click here
Contacts:
Jennifer Marcus
310-267-4839
Copyright © University of California - Los Angeles
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||