Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > ASU researchers give memory a boost

Abstract:
ASU's Center for Applied Nanoionics (CANi) has a new take on old memory, one that promises to boost the performance, capacity and battery life of consumer electronics from digital cameras to laptops. Best of all, it is cheap, made from common materials and compatible with just about anything currently on the market.

ASU researchers give memory a boost

Tempe, AZ | Posted on October 23rd, 2007

"In using readily available materials, we've provided a way for this memory to be made at essentially zero extra cost, because the materials you need are already used in the chips - all you have to do is mix them in a slightly different way," says Michael Kozicki, director of CANi.

The research was conducted in collaboration with Research Center Jülich in Germany. It was published in the October 2007 issue of the journal IEEE Transactions on Electron Devices in the article "Bipolar and Unipolar Resistive Switching in Cu-doped SiO2." The team included Christina Schindler, on loan from Germany to CANi, Sarath Chandran Puthen Thermadam of CANi, Kozicki, and Rainer Waser of the Institute for Solid State Research and Center for Nanoelectronics Systems and Information Technology in Jülich.

For some time now, conventional computer memory has been heading toward a crunch - a physical limit of how much storage can be crammed into a given space. Traditional electronics begins to break down at the nanoscale - the scale of individual molecules - because pushing electronics closer together creates more heat and greater power dissipation. As consumer electronics such as MP3 players and digital cameras shrink, the need for more memory in a smaller space grows.

Researchers have been approaching the problem from two directions, either trying to leapfrog to the next generation of memory, or refining current memory. CANi took both approaches, amping up performance via special materials while also switching from charge-based storage to resistance-based storage.

"We've developed a new type of old memory, but really it is the perfect memory for what's going to be required in future generations," Kozicki says. "It's very low-energy. You can scale it down to the nanoscale. You can pack a lot of it into a small space."

CANi was also able to overcome the limitations of conventional electronics by using nanoionics, a technique for moving tiny bits of matter around on a chip. Instead of moving electrons among charged particles, called ions, as in traditional electronics, nanoionics moves the ions themselves.

"We've actually been able to move something the size of a virus between electrodes to switch them from a high resistance to a low resistance, which is great for memory," Kozicki says.

Most memory today stores information as charge; in the binary language of computers, this means that an abundance of charge at a particular site on a chip translated as a "one," and a lack of charge is translated as a "zero." The problem with such memory is that the smaller its physical size, the less charge it can reliably store.

Resistance-based memory, on the other hand, does not suffer from this problem and can even store multiple bits on one site. Moreover, once the resistance is set, it does not change, even when the power is switched off.

CANi's previous high-performance resistance-change memory has been licensed to three companies, including Micron Technology and Qimonda, and has attracted the attention of Samsung, Sony and IBM. However, it used some materials, specifically silver and germanium sulfide, previously unused by industry and therefore required new processes to be developed.

The real advancement of CANi's newest memory is that researchers discovered a way to use materials already common in chip manufacturing. Although "doping" - mixing silicon with small amounts of conductive materials such as boron, arsenic or phosphorus - has been common practice for years, copper in silicon dioxide was largely unheard of. In fact, it was strictly avoided.

"People have actually gone to great lengths to keep the silicon oxide and the copper apart," Kozicki says. "But in our case, we are very interested in mixing the copper with the oxide - basically, so that it would become mobile and move around in the material."

"Because it can move in there, we can make a sort of nanoscale switch," he adds. "This very, very small switch can be used in memory applications, storing information via a range of resistance values."

Industry has already shown interest in the new memory and, if all goes well, consumers could see it on the market within a few years.

"What it means is we could replace all of the memory in all sorts of applications - from laptops to iPods to cell phones to whatever - with this one type of memory," Kozicki says. "Because it is so low energy, we can pack a lot of memory and not drain battery power; and it's not volatile - you can switch everything off and retain information. What makes this significant is that we are using materials that are already in use in the semiconductor industry to create a component that's never been thought of before."

####

For more information, please click here

Contacts:
Nicholas Gerbis

(480) 965-9690

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Memory Technology

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project