Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > GE Global Research Announces $6.8 Million to Accelerate Technology Advancements for Plug-in Hybrid Electric Vehicles

Abstract:


Funding to support two projects with DOE to develop higher performing hybrid drivetrain motors and advanced high energy density capacitors.

GE Global Research Announces $6.8 Million to Accelerate Technology Advancements for Plug-in Hybrid Electric Vehicles

NISKAYUNA, NY | Posted on October 23rd, 2007

GE Global Research, the centralized research organization of the General Electric Company (NYSE: GE) today announced $6.8 million in funding for two projects with the U.S. Department of Energy to help accelerate the introduction of plug-in hybrid vehicles to market.

The first project is a $5.6 million contract to develop smaller, lower cost, higher performing hybrid drivetrain motors for hybrid electric vehicles. The second is a $1.2 million project to develop advanced high temperature, high energy density capacitors. Both technologies are critical to helping enable the commercialization of plug-in hybrid vehicles. These projects are co-funded by the DOE's Office of Vehicle Technologies and managed by the National Energy Technology Laboratory (NETL).

"With concerns about global climate change and greenhouse gas emissions growing, plug-in hybrid vehicles are seen as one of the most promising solutions in the transportation sector for reducing greenhouse gas emissions," said Lembit Salasoo, Project Manager, GE Global Research. "But to be commercially viable on a large scale, key advancements will be needed in hybrid drivetrain motors and high density, high temperature capacitor technologies. These are both areas where GE has considerable expertise. We can draw from decades of experience in advanced materials development, motor designs, hybrid propulsion systems and capacitor research to deliver the necessary breakthroughs."

GE researchers are leveraging more than three decades of experience in electric and hybrid vehicles as well as GE's long-established electric machine expertise, which dates back to company founder Thomas Edison to support these two projects. They are both part of GE's commitment to introduce new, environmentally friendly products through its company-wide ecomagination initiative. Under ecomagination, GE has pledged to more than double its investment in the development of cleaner energy technologies from $700 million to $1.5 billion during the next five years.

Advanced Hybrid Drivetrain Motors

The focus of the advanced motors project is to have a scalable family of hybrid vehicle interior permanent magnet motor designs that are validated by testing and ready to supply the U.S. and global hybrid vehicle market.

GE researchers have done a great deal of prior work with auto manufacturers, the US Department of Energy, US Department of Transportation and New York agencies on other related projects, such as energy storage for GE Transportation's hybrid locomotive, and hybrid electric transit buses. GE researchers also have extensive experience in the design of electric motors from refrigerator fan motors to 1,000-hp locomotive traction motors and even larger natural gas and oilfield compressor motors. The knowledge gathered from these projects will be a valuable support to this project. Researchers in Niskayuna also will utilize expertise from the Center's Nanotechnology Advanced Technology Program to drive key nanomaterial advancements to deliver an increase in machine efficiency.

The project is scheduled to last three years and carried out in two phases. Phase 1 will entail a detailed study to assess low-cost manufacturing approaches, improved geometries and the advanced materials and motor designs applied to build the motor. Phase 2 will involve testing both light-automobile rated and heavier-vehicle rated prototype motors.

High Temperature, High Energy Density Capacitors

Capacitors are a critical component of the power electronics used in a plug-in hybrid drive system. As part of a second and separate DOE project, GE will focus on developing capacitors with higher power density and higher temperature capability. This will help reduce the size, cost and weight of the vehicle, while also improving performance.

GE researchers will be working on new capacitor materials and integrated device design. The project will be executed in two phases over a three-year period. In the first phase, the team will focus on the fundamental material development and upon success, be moving forward with building prototype capacitors in the final phase. GE will be working with multiple industry partners on the overall system integration.

####

About GE Global Research
GE Global Research is one of the world's most diversified industrial research organizations, providing innovative technology for all of GE's businesses. Global Research has been the cornerstone of GE technology for more than 100 years, and is now focused on developing breakthrough innovations in areas such as molecular medicine, energy conversion, nanotechnology, advanced propulsion, and security technologies. GE Global Research is headquartered in Niskayuna, New York and has facilities in Bangalore, India, Shanghai, China, and Munich, Germany.

For more information, please click here

Contacts:


GE
Media Relations:
Todd Alhart, 518-387-7914

Copyright © Business Wire 2007

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project