Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Sol-gel inks produce complex shapes with nanoscale features

Photo by L. Brian Stauffer

Graduate student Eric Duoss and Jennifer Lewis, the Thurnauer Professor of Materials Science and Engineering, have developed new sol-gel inks that can be printed into patterns to produce three-dimensional structures of metal oxides with nanoscale features.
Photo by L. Brian Stauffer
Graduate student Eric Duoss and Jennifer Lewis, the Thurnauer Professor of Materials Science and Engineering, have developed new sol-gel inks that can be printed into patterns to produce three-dimensional structures of metal oxides with nanoscale features.

Abstract:
New sol-gel inks developed by researchers at the University of Illinois can be printed into patterns to produce three-dimensional structures of metal oxides with nanoscale features.

Sol-gel inks produce complex shapes with nanoscale features

CHAMPAIGN, IL | Posted on October 11th, 2007

The ability to directly pattern functional oxides at the nanoscale opens a new avenue to functional devices. Potential applications include micro-fuel cells, photonic crystals and gas sensors.

The researchers describe the new inks in a paper accepted for publication in the journal Advanced Materials, and featured on its "Advances in Advance" Web site.

"Using this new family of inks, we have produced features as small as 225 nanometers," said co-author Jennifer Lewis, the Thurnauer Professor of Materials Science and Engineering and director of the university's Frederick Seitz Materials Research Laboratory (FSMRL). "Our goal is to get down to 100 nanometer feature sizes."

To create three-dimensional structures, the researchers use a robotic deposition process called direct-write assembly. The concentrated sol-gel ink is dispensed as a filament from a nozzle approximately 1 micron in diameter (about 100 times smaller than a human hair). The ink is dispensed while a computer-controlled micropositioner precisely directs the path. After the pattern for the first layer is complete, the nozzle is raised and another layer is deposited. This process is repeated until the desired shape is produced.

"We have opened direct ink writing to a new realm of functional materials," said graduate student Eric Duoss, the paper's lead author. "Since we print the desired functionality directly, the need for complicated templating and replicating schemes is eliminated."

Unlike previous inks, which require a liquid coagulation reservoir, the newly formulated inks are concentrated enough to rapidly solidify and maintain their shape in air, even as they span gaps in underlying layers.

"This gives us the ability to start, stop and reposition the flow of ink repeatedly, providing exquisite control over the deposition process," Duoss said. "For example, we can directly pattern defects in three-dimensional structures for use as photonic crystals."

After the structures have been assembled, they are converted to the desired functional oxide phase by heating at elevated temperature. Titanium dioxide, which possesses high refractive index and interesting electrical properties, is one material the researchers have successfully produced.

The researchers' ink design and patterning approach can be readily extended to other materials.

"There are a nearly endless variety of materials to choose from," Lewis said. "We envision having a toolbox of inks that can print at the micro- and nanoscale. These inks will be used for heterogeneous integration with other manufacturing techniques to create complex, functional devices composed of many different materials."

In addition to Lewis and Duoss, former post-doctoral researcher Mariusz Twardowski is a co-author of the paper.

Funding was provided by the U.S. Army Research Office. Part of the work was carried out in the FSMRL Center for Microanalysis of Materials, which is partially supported by the U.S. Department of Energy and the U. of I.

Editor's note: To reach Jennifer Lewis, call 217-244-4973; e-mail: .

####

About University of Illinois
At Illinois, research shapes the campus identity, stimulates classroom instruction and serves as a springboard for public engagement activities throughout the world. Opportunities abound for graduate students to develop independent projects and launch their own careers as researchers while working alongside faculty and assisting in their research. Illinois continues its long tradition of groundbreaking accomplishments with remarkable new discoveries and achievements that inspire and enrich the lives of people around the world.

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073

Copyright © University of Illinois

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Fuel Cells

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project