Home > Press > Miniature chain-mail fabric holds promise for smart textiles
Abstract:
Scientists at the University of Illinois have fabricated the world's smallest chain-mail fabric. Combined with existing processing techniques, the flexible, metallic fabric holds promise for fully engineered smart textiles.
"The miniature fabric is an important step toward creating textiles where structure and electronics can be designed, integrated and controlled from the ground up," said Chang Liu, a Willett Scholar and a professor of electrical and computer engineering at Illinois.
The fabric was made by Liu and graduate student Jonathan Engel. They describe the fabric and the fabrication process in the March issue of the Journal of Micromechanics and Microengineering.
The fabric is similar in construction to the chain-mail armor worn by medieval knights. It consists of a network of small rings about 500 microns in diameter and even smaller links about 400 microns long (a micron is 1 millionth of a meter). The rings and links are built upon a planar substrate and then released to create a flexible sheet that can bend along two axes and drape over curved surfaces.
Because the rings and links can slide and rotate against each other, the fabric possesses unique mechanical and electrical properties. For example, the electrical resistance changes when the fabric is stretched. These properties could prove useful for the development of smart fabric and wearable electronic devices for pervasive computing.
"The first layer of fabric could consist of silicon islands with embedded circuits or sensors," said Liu, who also is affiliated with the university's Beckman Institute for Advanced Science and Technology, the Institute for Genomic Biology, and the Micro and Nanotechnology Laboratory.
"The resulting fabric could generate electricity, detect movement or damage, or serve some other active role," Liu said.
Although demonstrated at the wafer scale, the researchers' chain-mail fabric could be made in large swatches by existing roll-to-roll processes.
The Defense Advanced Research Projects Agency funded the work.
####
About University of Illinois at Urbana-Champaign
Illinois has tremendous breadth and depth in academics, with more than 150 undergraduate and more than 100 graduate and professional programs. A preeminent faculty propels many academic programs to be ranked among the best in the world. This emphasis on campuswide academic excellence has built Illinois' reputation as one of the nation's premier public universities.
For more information, please click here
Contacts:
James E. Kloeppel
217-244-1073
Copyright © University of Illinois at Urbana-Champaign
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Textiles/Clothing
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022
Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||