Home > Press > Researcher’s Light Body Armor May Save Soldiers’ Lives
Abstract:
For Florida State University researcher Okenwa Okoli, testing his latest research is vital. Okoli, an associate professor of industrial and manufacturing engineering in the Florida A&M University-Florida State College of Engineering in Tallahassee, Fla., and his research team at FSU's High-Performance Materials Institute have been working on bullet-proof body armor for U.S. military men and women.
For Florida State University researcher Okenwa Okoli, testing his latest research is vital.
Okoli, an associate professor of industrial and manufacturing engineering in the Florida A&M University-Florida State College of Engineering, and his research team at FSU's High-Performance Materials Institute (www.hpmi.net) have been working on bullet-proof body armor for U.S. military men and women.
"If I can wear it and it's tested on me and it works, then yes, our soldiers can wear it," he said. "The military personnel utilizing this equipment need to maneuver very quickly, and as such, the less weight they have to carry around, the better."
Okoli has been working with nanotubes, a carbon-based material that is much smaller than a human hair but stronger than any material known to man. Nanotubes are derived from buckminsterfullerene, a unique carbon molecule that is both extraordinarily strong and light. FSU chemistry Professor Harold Kroto shared the Nobel Prize for Chemistry in 1996 with two colleagues, Richard E. Smalley and Robert F. Curl Jr., who jointly discovered buckminsterfullerene, which is better known by its nickname, "buckyballs."
Okoli and a former colleague, Jim Thagard, developed a composite manufacturing process to create lightweight body armor using nanotubes that protects a soldier's legs, arms and head. Metal traditionally has been used for such protective gear, but lightweight composites materials such as the ones produced by Okoli now can be used in place of heavier metals, he said.
Today, Okoli is working with the U.S. Air Force to build bulletproof body armor for the force's parajumpers.
"Because of the weight of the current body armor systems they have, it smacks them on the back," Okoli said. "And the momentum of jumping from such a great height and the weight of the plates throws them off target, one, and can injure them, two. So it's not very user-friendly, even though they have to use it to protect themselves. Now, what we've done over the past year is create armor plates that are thinner and weigh less but still do the job."
Okoli said there are many universities nationwide looking at lighter solutions to bulky body armor so that soldiers can better do their job in the field. However, the FAMU-FSU College of Engineering leads the effort due to its work with nanotubes.
####
About FAMU-FSU College of Engineering
Although the FAMU-FSU College of Engineering has been in existence for merely 23 years, this joint institution of Florida A&M University and Florida State University has demonstrated great success in educating engineers for the future, implementing outreach activities to K-12 students, and conducting research to fulfill the needs of society. Committed to its motto, “Quality, Growth, and Diversity,” The FAMU-FSU College of Engineering has become the fastest growing engineering college in the nation. The College occupies two state-of-the-art buildings with 200,000 square feet of classroom, office and laboratory space, with another two on the drawing board to be completed in the next ten years. These facilities have become the academic home for more than 2,300 undergraduate and graduate students.
For more information, please click here
Contacts:
Okenwa Okoli
(850) 410-6352
Copyright © Newswise
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||