Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New stamping process creates metallic interconnects, nanostructures

Abstract:
Creating high-resolution metallic interconnects is an essential part of the fabrication of microchips and other nanoscale devices. Researchers at the University of Illinois at Urbana-Champaign have developed a simple and robust electrochemical process for the direct patterning of metallic interconnects and other nanostructures.

New stamping process creates metallic interconnects, nanostructures

CHAMPAIGN, IL | Posted on February 21st, 2007

"Solid-state superionic stamping offers a new approach, both as a stand-alone process and as a complement to other nanofabrication techniques, for creating chemical sensors, photonic structures and electrical interconnects," said Nicholas X. Fang, a professor of mechanical science and engineering, and corresponding author of a paper published in the Feb. 14 issue of the journal Nano Letters.

The S4 process uses a patterned superionic material as a stamp, and etches a metallic film by an electrochemical reaction. In superionic materials, metal ions can move almost freely around the crystal lattice. These mobile materials can also be used in batteries and fuel cells.

Unlike conventional processing - in which patterns are first placed on photoresist, followed by metal deposition and subsequent etching - the S4 process creates high-resolution metallic nanopatterns in a single step, potentially reducing manufacturing costs and increasing yields.

The S4 process begins by carving the desired pattern into a stamp made of superionic material, such as silver sulfide, using focused ion beam milling. The stamp is then placed on the substrate and a voltage is applied. This produces an electrochemical reaction at the contact points of the interface.

The reaction generates metal ions, which migrate across the interface into the stamp. As the reaction continues, the stamp progresses into the substrate, generating features complementary to the pattern on the stamp.

"The stamp acts like a sponge, soaking up metal ions," said Fang, who also is a researcher at the university's Beckman Institute for Advanced Science and Technology, and at the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems.

"The most difficult step in the S4 process is making the stamp extremely flat and smooth," said graduate student Keng H. Hsu, the paper's lead author. "Currently, our resolution for patterning details is 50 nanometers. As better tools for engraving the stamps are developed, we will achieve finer resolution."

Ultimately, the resolution will be limited by the mechanical properties of the stamp, Hsu said.

With Fang and Hsu, co-authors of the paper are Placid M. Ferreira, a U. of I. professor of mechanical science and engineering, and director of NanoCEMMS; and graduate student Peter L. Schultz.

The work was funded by the U.S. Department of Energy and the National Science Foundation.

####

About University of Illinois at Urbana-Champaign
The University of Illinois at Urbana-Champaign is a national and global leader in education and research, attracting the best students from across the country and around the world. You’ll select from 150 undergraduate majors and more than 4,000 courses and learn with an award-winning, world-class faculty. The university takes pride in ensuring students make the most of their time here at Illinois, both in and out of the classroom.

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073


Nicholas Fang
217-265-8262

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project