Home > Press > DOD Awards Rice $3M For Breast Cancer Research
Abstract:
The Department of Defense (DOD) has named Rice University the recipient of a $3 million award for a five-year program to develop miniaturized molecular imaging technologies for screening, diagnosis and monitoring of breast cancer. The program, which will be conducted in collaboration with The University of Texas M. D. Anderson Cancer Center, calls for the development of microendoscope and needle-compatible fiber optic systems for diagnostic and therapeutic breast cancer imaging.
The Department of Defense (DOD) has named Rice University the recipient of a $3 million award for a five-year program to develop miniaturized molecular imaging technologies for screening, diagnosis, and monitoring of breast cancer. The program, which will be conducted in collaboration with The University of Texas M. D. Anderson Cancer Center, calls for the development of microendoscope and
needle-compatible fiber optic systems that doctors can use for a variety of diagnostic and therapeutic breast cancer imaging needs, ranging from early detection to guiding surgery to monitoring the efficacy of radiation therapy and targeted drug treatments.
The program's principal investigator, Rice bioengineer Rebekah Drezek, is one of three U.S. scientists chosen by the DOD for this year's Era of Hope Scholar Award, which is given annually by the DOD's Congressionally Directed Breast Cancer Research Program (BCRP).
The award recognizes "exceptionally talented, early-career scientists who have demonstrated through their extraordinary creativity, vision and productivity that they are the best and brightest in their fields."
Drezek, associate professor in both bioengineering and in electrical and computer engineering, was selected for her translational research developing miniaturized photonics-based molecular imaging technologies for screening, diagnosis, and monitoring of breast cancer. She is the first Rice faculty member to receive the Era of Hope Scholar Award and is the only principal investigator chosen this year that is not at a medical institution.
"Medical imaging plays a critical role in all aspects of breast cancer care," Drezek said. "From initial screening and diagnosis to guiding and monitoring therapeutic interventions, doctors use a variety of imaging technologies like x-rays, ultrasound and magnetic resonance imaging, or MRI. But all of these technologies provide low-resolution, non-specific anatomic images of tissue."
Research in Drezek's lab takes a different approach to clinical breast cancer imaging, focusing on the development of inexpensive, portable photonic-based imaging tools that provide high-resolution in situ imaging of the molecular hallmarks of breast cancer.
"In current practice, doctors need to biopsy a tumor in order to conduct the chemical tests that find the molecular signatures of different types of cancer," Drezek said. "There is a tremendous need for novel technologies that can detect biomarkers without tissue removal."
Drezek said most optical imaging research to date has focused on screening, but the dramatic expansion of new, targeted cancer therapies has created a substantial need for imaging tools that can monitor the efficacy of molecular-targeted therapeutics. Drezek's research group uses an
interdisciplinary bench-to-bedside approach to develop imaging tools that ultimately can be used to monitor therapies including chemotherapy, radiation therapy, and surgery. Kuan Yu, assistant professor of radiation oncology, will lead the portion of the research conducted at M. D. Anderson.
"By combining our lab's expertise with that of our clinical partners at M.D. Anderson, we hope to take advantage of parallel advances in micro-optics, nanoscale imaging agents, and breast cancer biomarker identification to enable a completely different approach to molecular imaging of breast cancer than was possible just a few years ago," Drezek said. "More importantly, we want to have the clinical partners in place to help us continually adjust our path forward so that we are always directing our efforts towards those areas of medical need where we will be able to make most direct and significant impact on patient care."
Other significant honors Drezek has received include the Massachusetts Institute of Technology's TR100 World's 100 Top Young Innovator Award(2004), the Beckman Young Investigator Award (2005), and the American Association for Medical Instrumentation Becton Dickinson Career Achievement Award (2005). Last year, Drezek was an invited speaker at the National Academy of Engineering's Frontiers in Engineering (2006).
Congress established the Department of Defense Congressionally Directed Breast Cancer Research Program (BCRP) in 1992 in response to lobbying efforts by advocacy organizations that sought research specifically designed to address breast cancer. The DOD was chosen because of its long history in medical research and responsiveness to unmet medical need. BCRP is second only to the National Cancer Institute as a U.S. funding source for breast cancer research.
####
About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.
For more information, please click here
Contacts:
Jade Boyd
713-348-6778
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Human Interest/Art
Drawing data in nanometer scale September 30th, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021
JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||