Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Rice develops first method to sort nanotubes by size

Abstract:
Method sorts nanotubes based on unique electric properties

Rice develops first method to sort nanotubes by size

Houston, TX | Posted on June 23, 2006

Rice University scientists have developed the first method for sorting semiconducting carbon nanotubes based on their size, a long-awaited development that could form the basis of a nanotube purification system capable of producing the necessary feedstocks for nano-circuits, therapeutic agents, next-generation power cables and more.

Nanotubes, tiny cylinders of carbon no wider than a strand of DNA, possess a tantalizing array of properties coveted by materials scientists. Nanotubes are stronger than steel, but weigh one sixth as much. Some varieties are excellent semiconductors, while others are metals that conduct electricity as well as copper.

But there are dozens of varieties of nanotubes, each slightly different in size and atomic structure and each with very different properties. For many applications, engineers need to use just one type of nanotube, but that's not possible today because all production methods turn out a mishmash of types.

New research due to appear in an upcoming issue of the Journal of the American Chemical Society describes a new method that uses electric fields to sort nanotubes by size.

"People have developed sorting methods based on both chemical and electrical properties, but ours is the first that's capable of sorting semiconducting nanotubes based upon their dielectric constant, which is determined by their diameter," said corresponding author, Howard Schmidt, executive director of Rice's Carbon Nanotechnology Laboratory (CNL).

To sort nanotubes, the CNL team built a system that capitalizes on the fact that each type of nanotube has a unique dielectric constant – a term that refers to a material's ability to store electrostatic energy. CNL scientists created an electrified chamber and pumped a solution of dissolved nanotubes through it. The chamber traps metallic nanotubes and causes semiconducting varieties to float at different levels in the chamber. The smaller the diameter of the nanotube, the larger the dielectric constant and the lower in the system the tubes float. By varying the speed of flow through the system – with upper-level currents traveling faster than lower-level currents – the scientists were able to collect samples that had three times more small tubes than large and vice versa.

The experimental work was primarily performed by research scientist Haiqing Peng and first-year graduate student Noe Alvarez. Co-authors on the paper include research scientist Carter Kittrell and distinguished faculty fellow Robert Hauge. The research was supported by NASA, the Department of Energy, the Army Research Laboratory and the Air Force Office of Scientific Research.

####

About Rice University:
Rice University is consistently ranked one of America's best teaching and research universities. It is distinguished by its: size: 2,850 undergraduates and 1,950 graduate students; selectivity: 10 applicants for each place in the freshman class; resources: an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice's wooded campus is located in the nation's fourth largest city and on America's South Coast.

For more information, please click here

Contact:
Jade Boyd
(713) 348-6778
jadeboyd@rice.edu

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project