Home > Press > Nanomaterials to Mimic Cells
Nanomaterials to Mimic Cells
August 23, 2005
Mimicking a real living cell by combining artificial membranes and nanomaterials in one construction is the aim of a new research grant at UC Davis. The Nanoscale Integrated Research Team grant, funded by the National Science Foundation with $1.6 million over four years, will study membranes mounted on aerogels, solid materials riddled with so many tiny pores that they are mostly empty.
All living cells are wrapped in a double-layered membrane of oily lipid molecules. Cell membranes are studded with proteins and other molecules, governing how food and wastes get in and out of a cell, how cells signal to and react to their environment, and how they divide and grow.
Currently, researchers studying artificial membranes mount them on solid substrates such as gold, glass or polymers, but that means that only one side of the membrane is accessible, said Subhash Risbud, professor of chemical engineering and materials science at UC Davis and principal investigator on the project.
Using the porous aerogel as a support, the researchers should be able to access and study both sides of the membrane.
"The hope is to build artificial membrane systems that are as close to a biological membrane as we can get right now," said Marjorie Longo, associate professor of chemical engineering and materials science at UC Davis.
The studies could lead to new insights into how real cell membranes behave, for example in the platelet cells that form blood clots.
Other members of the project are Roland Faller, assistant professor in the Department of Chemical Engineering and Materials Science, UC Davis; Curtis Frank, Stanford University; Joe Satcher, Lawrence Livermore National Laboratory; and researchers at the Max Planck Institute for Polymer Research in Germany; Unilever Research and Development U.K in England, and Helsinki University of Technology in Finland.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Investments/IPO's/Splits
Daikin Industries becomes OCSiAl shareholder July 27th, 2021
INBRAIN Neuroelectronics raises over €14M to develop smart graphene-based neural implants for personalised therapies in brain disorders March 26th, 2021
180 Degree Capital Corp. Issues Second Open Letter to the Board and Shareholders of Enzo Biochem, Inc. March 26th, 2021
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |