Home > News > Hot Electrons From Catalysis
April 13th, 2005
Hot Electrons From Catalysis
Abstract:
Imagine being able to tap the energy released during exothermic reactions on surfaces.
Now, a research team has constructed a nanoscale device known as a Schottky diode and used it to measure a continuous flow of hot electrons generated by catalytic surface reactions. Specifically, the group--which includes chemistry professor Gabor A. Somorjai and postdoc Xiaozhong (Eric) Ji of the University of California, Berkeley, and Anthony Zuppero and Jawahar M. Gidwani of San Francisco-based NeoKismet--measured a continuous current of 40 µamp produced via oxidation of carbon monoxide on a platinum electrode for more than half an hour.
Source:
ACS
Related News Press |
Possible Futures
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |