Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Switching one light beam with another

Abstract:
Cornell University researchers have demonstrated for the first time a device that allows one low-powered beam of light to switch another on and off on silicon, a key component for future "photonic" microchips in which light replaces electrons.

Switching one light beam with another, Cornell provides a key component for photonic chips

Ithaca, NY – October 27, 2004

Cornell University researchers have demonstrated for the first time a device that allows one low-powered beam of light to switch another on and off on silicon, a key component for future "photonic" microchips in which light replaces electrons.

Photonics on silicon has been suggested since the 1970s, and previous light-beam switching devices on silicon have been demonstrated, but they were excessively large (by microchip standards) or have required that the beam of light that does the switching be very high-powered. The approach developed by Michal Lipson, Cornell assistant professor of electrical and computer engineering, confines the beam to be switched in a circular resonator, greatly reducing the space required and allowing a very small change in refractive index to shift the material from transparent to opaque.

Cornell - ring resonator coupled to two straight waveguides

Scanning electron microscope photo of a ring resonator coupled to two straight waveguides. By making the resonator either transparent or opaque to a particular wavelength of light, a photonic circuit could control whether or not the light passes from one straight waveguide to the other. Click on the image for a high-resolution version (1280 x 960 pixels, 1236K). © Copyright Cornell

The advancement of nanoscale fabrication techniques in just the past few years has made it possible to overcome some of the traditional limitations of silicon photonics, Lipson said. Photonic circuits will find their first application in routing devices for fiber-optic communications, she suggests. At present, information that travels at the speed of light through optical fiber must be converted at the end into electrical signals that are processed on conventional electronic chips, then in many cases converted back into optical signals for retransmission, an extremely slow process. The all-optical switch makes it possible to route these signals without conversion.

The all-optical switch is described in the Oct. 28 issue of the journal Nature by Lipson and members of the Cornell Nanophotonics Research Group, which she directs. The researchers used the facilities of the Cornell NanoScale Facility to manufacture the devices on silicon chips. "It is highly desirable to use silicon -- the dominant material in the microelectronic industry -- as the platform for these photonic chips," they said in their paper. The group already has developed other components for silicon photonic chips, including straight and curved waveguides. One of the key components needed, however, is a way for one optical signal to switch another on or off.

Lipson's optical switch is based on a ring resonator, a device already familiar to photonics researchers. When a ring-shaped waveguide is placed tangent to a straight one, photons traveling along the straight waveguide are diverted into the ring and travel around it many times, but only if they match the resonant frequency of the ring, which is determined by its circumference. For the reported experiments, the researchers created a ring 10 micrometers in diameter with a resonance wavelength of 1,555.5 nanometers, in the near infrared.

To turn the switch off, they pumped a second beam of light in the same wavelength range through the system. This light is absorbed by the silicon through a process known as two-photon absorption, creating many free electrons and "holes" (positively charged regions) in the material. This changes the refractive index and shifts the resonant frequency of the ring far enough that it will no longer resonate with the 1,555.5-nanometer signal. The process can theoretically take place in a few tens of picoseconds, the researchers said.

A similar effect can be used in a straight waveguide, but it requires a fairly long distance. Because light travels many times around the ring, the scattering effect is enhanced and the signal can be controlled in a very small space.

For routing applications, Lipson said, a ring resonator coupled to two waveguides could be used. The second waveguide would receive a signal only when the resonator is switched on. She noted that there is very little loss of light in the ring, meaning that light coming into a routing device could be "recycled" and sent on its way with no additional amplification needed.

Ring resonators also could be used as tunable filters, the researchers suggest, for example to separate the many wavelengths of light in multiplexed optical fiber communications systems.

The Nature paper is titled "All-optical switch on silicon: Controlling light with light on chip." Co-authors are Vilson Almeida, a former Cornell graduate student now in the Institute for Advanced Studies in the Technical Center of the Brazilian Air Force; Carlos Barrios, former Cornell postdoctoral researcher and now a scientist in the Nanophotonics Technology Centre, Universidad Politénica de Valencia, Spain; and Roberto Panepucci, former Cornell research associate now an assistant professor at Florida International University.

Previous work on nanoscale optical waveguides and photonic coupling is described in a paper, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges," published in the Institute of Physics journal Nanotechnology, Aug. 2, 2004.

Related World Wide Web sites: The following sites provide additional information on this news release.

The Cornell nanophotonics group

Previous Cornell News Service story on photonic microchips

Contact:

Bill Steele
607-255-7164
ws21@cornell.edu

Copyright © Cornell

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project