Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us

Abstract:
At NASA’s Cold Atom Lab facility aboard the International Space Station, an international team of scientists produced a quantum gas containing two types of atoms for the first time in space. The achievement, outlined in a new study published in Nature, marks another step toward bringing quantum technologies currently available on Earth into space.

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us

Rochester, NY | Posted on November 17th, 2023

Through experiments controlled remotely on Earth, the researchers produced Bose-Einstein condensates—a quantum state of matter made from an atomic gas cooled to temperatures close to absolute zero. Nicholas Bigelow, the Lee A. DuBridge Professor of Physics and a professor of optics at the University of Rochester, says these quantum tools can be used to enhance the study of the essence of quantum matter, aid in the navigation between planets, as well as to help solve mysteries of the universe and deepen our understanding of the fundamental laws of nature.

Reaping the benefits of zero gravity
“There are a lot of things in fundamental physics where being in the presence of gravity actually limits how precise a measurement you can make,” says Bigelow, director of the NASA-funded Consortium for Ultracold Atoms in Space. “Removing gravity allows you to make a much longer observation time to get more precision in the measurement, and it allows you to see delicate effects that might be masked by gravity.”

With this new capability, the Cold Atom Lab can now study not only the quantum properties of individual atoms, but also quantum chemistry, which focuses on how different types of atoms interact and combine with each other in a quantum state. Researchers will be able to conduct a wider range of experiments with the Cold Atom Lab and learn more about the nuances of performing them in microgravity. That knowledge will be essential for harnessing the one-of-a-kind facility to develop new space-based quantum technologies.

One mystery the scientists aim to chip away at involves the equivalence principle, which holds that gravity affects all objects the same regardless of their mass. Part of Albert Einstein’s general theory of relativity—the backbone of modern gravitational physics—the principle doesn’t neatly match up with the laws of quantum physics, which describe behaviors of small objects like atoms. Scientists have already experimented with atom interferometers on Earth to see if the equivalence principle holds true at atomic scales, but they can test it more precisely in space at the Cold Atom Lab.

A route to understanding dark energy—and to better sensors and clocks
Bigelow says the scientists plan to run experiments using a two-atom interferometer and quantum gases to measure gravity with high precision to learn about the nature of dark energy, the mysterious driver behind the accelerating expansion of the universe. What they learn could lead to the development of precision sensors for a wide range of applications.

“We could make sensors that are extremely sensitive to small rotations and essentially use these cold atoms in the Bose-Einstein condensate to make gyroscopes,” says Bigelow. “These gyroscopes could give us a fixed reference point in space that could be used for deep space navigation. We’re also developing a number of things that could lead to better clocks in space, which are crucial to so many things in modern life such as high-speed internet and GPS.”

####

For more information, please click here

Contacts:
Luke Auburn
University of Rochester

Cell: 5854903198

Copyright © University of Rochester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum Physics

Energy transmission in quantum field theory requires information September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Quantum chemistry

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Unveiling the quantum dance: Experiments reveal nexus of vibrational and electronic dynamics: Coupling of electronic and nuclear dynamics revealed in molecules with ultrafast lasers and X-rays July 21st, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

Manufacturing advances bring material back in vogue January 20th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project