Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The ICN2 co-leads a roadmap on quantum materials

Typical skyrmion spin textures where the spin texture is indicated by the arrows.
Typical skyrmion spin textures where the spin texture is indicated by the arrows.

Abstract:
Twenty-nine leading experts of materials science, quantum information, condensed-matter physics and related areas review the diverse materials and challenges in the field.
The roadmap points out the directions in which new research is necessary, combining both fundamental and applied interests, such as quantum computing.

The ICN2 co-leads a roadmap on quantum materials

Barcelona, Spain | Posted on September 29th, 2020

The term “quantum materials” was introduced to highlight the exotic properties of unconventional superconductors, heavy-fermion systems (materials with unusual electronic and magnetic properties) and multifunctional oxides. More recently, the definition has broadened to cover all the materials that allow scientists and engineers to explore emergent quantum phenomena and their potential applications.

This broadening of the concept puts together diverse fields of science and engineering, from condensed-matter and cold-atom physics to materials science and quantum computing. Prof. Feliciano Giustino (The University of Texas at Austin) and ICREA Prof. Stephan Roche (Catalan Institute of Nanoscience and Nanotechnology) proposed themselves to capture a snapshot of the latest developments in this vast and fast-moving research area. With this aim, “The 2020 Quantum Materials Roadmap” review has been published in Journal of Physics: Materials.

Twenty-nine international leading experts (six of them from BIST centres: Stephan Roche, Adriana I. Figueroa, Regina Galceran, Sergio O. Valenzuela and Marius V. Costache from ICN2, and Pol Forn-Díaz from IFAE) have participated in this roadmap sharing their vision and expertise in different areas: complex oxides, quantum spin-liquids, cuprate superconductors, topological insulators, superconductor and semiconductor qubits, 2D hyperbolic materials, spin torque materials and magnetic skyrmions are just some of the fancy named objects under study by the experts, which shows to what extent the term "quantum materials" has indeed broadened. The roadmap also includes work on machine learning, a tool that is becoming increasingly important to catalogue, search and design new quantum materials.

Understanding well all these materials is not only of fundamental interest, but it might also lead to some technological advances, such as the very expected quantum computers, even in a more robust version (the so-called non-abelian topological quantum computers).

The authors expect that, by offering a big picture of the emerging horizons in quantum materials research and by pointing out the directions where further work and analysis is needed, this roadmap will foster new researches and interdisciplinary collaborations to address these and other as yet unexplored issues.

####

For more information, please click here

Contacts:
Francisco J. Paños

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article reference:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Quantum Physics

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Skyrmions

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Spin photonics to move forward with new anapole probe November 4th, 2022

Search for strange Skyrmion phenomenon fails but finds stranger magnetic beaded necklace: Physicists on the hunt for a rarely seen magnetic spin texture have discovered another object that bears its hallmarks, hidden in the structure of ultra-thin magnetic films, that they have c April 2nd, 2021

Discovery may lead to new materials for next-generation data storage: Army-funded research demonstrates emergent chirality in polar skyrmions for the first time in oxide superlattices May 10th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Quantum Computing

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Quantum nanoscience

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project