Home > Press > Synthesis of organophilic carbon nanodots with multi-band emission from tomato leaves
Organophilic carbon nanodots (CNDs) were synthesized from extract of natural plant leaves. The CNDs showed multi-band emission, and could be well-dispersed in acetone and ethanol. Taking advantage of their optical property, the CNDs were applied as a ratiometric and colorimetric sensor for curcumin detection in ethanol solution. |
Abstract:
n a paper published in NANO, researchers from Shanghai Normal University, China prepared organophilic carbon nanodots (CNDs) using natural organic molecules in plant leaves by a one-pot green synthesis. The multi-emissive carbon dots were used as an efficient fluorescent sensor in ethanol, which have potential applications in sensing fields or energy devices.
Organophilic carbon nanodots (CNDs) were synthesized in acetone from organic extract of natural plant leaves. The CNDs showed multi-band emission, and could be well dispersed in acetone and ethanol. Taking advantage of their structural and optical properties, the CNDs were used as a ratiometric and colorimetric sensor for curcumin detection in ethanol.
Multi-band emission is one of the intriguing properties of the CNDs. In this work, the biomass-derived CNDs showed two photoluminescence (PL) bands. The PL at 520 nm was excitation-independent, while the PL in the blue region could be tuned from 420 nm to 480 nm through changing of the excitation wavelength. Taking advantage of their optical properties, the CNDs were used as a ratiometric and colorimetric sensor for curcumin detection in ethanol. The blue PL of the CNDs at 420 nm was quenched by curcumin through inner filter effect. Meanwhile, the green PL at 495 and 535 nm were enhanced with additional fluorescence of curcumin. The fluorescence color of the mixed solution changed from blue to yellow, and the detection limit reached 36.7 nM. The sensitive and visual detection of the CNDs probe toward curcumin showed their high potential in practical applications.
While most CNDs reported so far were prepared in water, it is of high demand to develop CNDs that can be well dispersed in organic solution. Natural plant leaves contain plenty of organic molecules, their aliphatic groups may be reserved during the formation of the CNDs, and act as surface groups to realize hydrophobicity of the obtained CNDs. Here, the CNDs were directly synthesized in acetone containing organic extract of plant leaves, and could be well-dispersed in acetone and ethanol. This work provided a possible way for changing surface groups of the CNDs by selecting the raw materials.
This work was supported by National Natural Science Foundation of China (No. 61904108; 31900260) and Chenguang Program" (No. 19CG50) by Shanghai Education Development Foundation and Shanghai Municipal Education Commission. The authors would like to thank Dr. Xiaofeng Xu for providing the plant leaves, and thank Dr. Jianwen Yang for the funding and opportunity to finish this work.
###
####
About World Scientific
World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research, professional and educational communities. The company publishes about 600 books annually and about 140 journals in various fields. World Scientific collaborates with prestigious organizations like the Nobel Foundation and US National Academies Press to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit http://www.worldscientific.com .
For more information, please click here
Contacts:
Yu Shan Tay
@worldscientific
Copyright © World Scientific
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||