Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Mathematical tool helps calculate properties of quantum materials more quickly

Intelligent mathematical tools for the simulation of spin systems reduce the computing time required on supercomputers. Some of the fastest supercomputers in the world are currently located at Forschungszentrum Jülich (shown here is JUWELS).

CREDIT
Forschungszentrum Jülich/Sascha Kreklau
Intelligent mathematical tools for the simulation of spin systems reduce the computing time required on supercomputers. Some of the fastest supercomputers in the world are currently located at Forschungszentrum Jülich (shown here is JUWELS). CREDIT Forschungszentrum Jülich/Sascha Kreklau

Abstract:
Supercomputers around the world work around the clock on research problems. In principle, even novel materials can be simulated in computers in order to calculate their magnetic and thermal properties as well as their phase transitions. The gold standard for this kind of modelling is known as the quantum Monte Carlo method.

Mathematical tool helps calculate properties of quantum materials more quickly

Berlin, Germany | Posted on August 14th, 2020

Wave-Particle Dualism

However, this method has an intrinsic problem: due to the physical wave-particle dualism of quantum systems, each particle in a solid-state compound not only possesses particle-like properties such as mass and momentum, but also wave-like properties such as phase. Interference causes the "waves" to be superposed on each other, so that they either amplify (add) or cancel (subtract) each other locally. This makes the calculations extremely complex. It is referred to the sign problem of the quantum Monte Carlo method.

Minimisation of the problem

"The calculation of quantum material characteristics costs about one million hours of CPU on mainframe computers every day", says Prof. Jens Eisert, who heads the joint research group at Freie Universität Berlin and the HZB. "This is a very considerable proportion of the total available computing time." Together with his team, the theoretical physicist has now developed a mathematical procedure by which the computational cost of the sign problem can be greatly reduced. "We show that solid-state systems can be viewed from very different perspectives. The sign problem plays a different role in these different perspectives. It is then a matter of dealing with the solid-state system in such a way that the sign problem is minimised", explains Dominik Hangleiter, first author of the study that has now been published in Science Advances.

From simple spin systems to more complex ones

For simple solid-state systems with spins, which form what are known as Heisenberg ladders, this approach has enabled the team to considerably reduce the computational time for the sign problem. However, the mathematical tool can also be applied to more complex spin systems and promises faster calculation of their properties.

"This provides us with a new method for accelerated development of materials with special spin properties", says Eisert. These types of materials could find application in future IT technologies for which data must be processed and stored with considerably less expenditure of energy.

###

Science Advances 2020: Easing the Monte Carlo sign problem; Dominik Hangleiter, Ingo Roth, Daniel Nagaj, Jens Eisert

####

For more information, please click here

Contacts:
Prof. Jens Eisert

49-308-386-8322

@HZBde

Copyright © Helmholtz-Zentrum Berlin für Materialien und Energie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Quantum nanoscience

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project