Home > Press > A consensus statement establishes the protocols to assess and report stability of perovskite photovoltaic devices
Abstract:
The existing characterization procedures to evaluate emerging photovoltaic devices are not appropriate for halide perovskite solar cells, a new generation of solar cells called to overcome the present state-of-the-art technologies. A vast group of scientists with Prof. Pavel A. Troshin representing Skoltech has reached a consensus on the suitable procedures and the variables to be reported in stability studies of this kind of solar cells. The consensus statement, highlighted in the last issue of Nature Energy, updates the ISOS protocols for the stability assessment of perovskite photovoltaics with additional procedures to account for properties specific to this technology.
Perovskite solar cells (PSCs) represent a new kind of photovoltaic devices expected to rival the widespread silicon panels. The efficiency of perovskite-based solar cells is already superior, but their lifespan must be extended. This is the pending issue for the PSCs to reach commercialization. However, the existing qualification tests to evaluate the performance of solar cells are not appropriate for PSCs, as these have different material properties and device architectures. Therefore, publications studying the stability of PSCs lack consistency in the experimental procedures used and the parameters reported, which hampers data comparison and a proper understanding of the cell degradation mechanisms.
A large group of scientists decided to put an end to this situation: 59 leading researchers from 51 affiliations have agreed on how the stability of perovskite cells should be assessed and reported. The discussion was led by Prof. Mónica Lira-Cantú, Group Leader of the ICN2 Nanostructured Materials for Photovoltaic Energy Group, and by Prof. Eugene A. Katz, Professor at the Ben-Gurion University of the Negev, Israel. Among the authors are remarkable researchers such as Prof. Nam-Gyu Park and Prof. Henry J. Snaith, Nobel Prize candidates in 2017 for their discovery of the perovskite cells. Skoltech team was represented by Prof. Pavel Troshin. The result of the discussion is a consensus statement published in Nature Energy and highlighted in the journal editorial.
The experts have complemented the existing protocols with a set of testing procedures that account for specific features of PSCs, including light-dark-cycling, the study of cell behavior under electrical bias in the dark or intrinsic stability testing, among others. The researchers have also proposed a checklist for reporting results aimed at improving reproducibility.
However, there is still work to be done. A technical report is a next step to pave the way for standardization, which would be the last station in this journey from lab to industry. In the context of a society demanding green solutions for energy production, the efforts devoted to standardizing the study of perovskites facilitate the advance towards a new generation of enhanced solar cells.
####
For more information, please click here
Contacts:
Alina Chernova
7-905-565-3633
Copyright © Skolkovo Institute of Science and Technology (Skoltech)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Perovskites
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
Chemical reactions can scramble quantum information as well as black holes April 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||