Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers to develop a theory of transients in graphene: The research considers behavior of graphene in the moment of its transition from the state of thermal equilibrium and the process of returning to this state

Scientists to develop a theory of transients in graphene.

CREDIT
Peter the Great St.Petersburg Polytechnic University
Scientists to develop a theory of transients in graphene. CREDIT Peter the Great St.Petersburg Polytechnic University

Abstract:
The article "Equilibration of energies in a two-dimensional harmonic graphene lattice" published in the oldest scientific journal in the world Philosophical Transactions of the Royal Society considers the behavior of graphene in the moment of its transition from the state of thermal equilibrium and the process of returning to this state. The scientific report is conducted by Vitaly Kuzkin, the deputy director of Higher School of Theoretical mechanics and Research Educational Centre "Gazpromneft-Polytech" of Peter the Great St.Petersburg Polytechnic University (SPbPU) in collaboration with Igor Berinskii from the School of Mechanical Engineering, Tel Aviv University (Israel) in the field of materials science, solid mechanics and dynamics of mechanical systems.

Researchers to develop a theory of transients in graphene: The research considers behavior of graphene in the moment of its transition from the state of thermal equilibrium and the process of returning to this state

St. Petersburg, Russia | Posted on December 27th, 2019

"Our research group develops a theory that describes the transition to thermal equilibrium in crystals which are initially in a nonequilibrium state. It can be caused, for example, by high-speed laser exposure or the passage of shock waves. In this paper, we applied this theory to graphene", notes Vitaly Kuzkin. Usually, transients occur rather quickly and have a high frequency, but graphene turned out to be unique here - some transients in graphene have very low frequencies. "

The research results are important for investigation of heat transport and other nonequilibrium thermodynamic processes in graphene.

"Graphene is a very promising material. It has many useful properties like strength, stiffness, high heat and electrical conductivity. It can be used in flexible electronics, wearable devices, and in creation of composite materials," - explains Vitaly Kuzkin.

###

Publication in Philosophical Transactions of the Royal Society, which printed by Royal Society of London, is considered prestigious. This is the oldest scientific journal with long, rich history that continuously published since 1665.

####

For more information, please click here

Contacts:
Raisa Bestugina

7-812-591-6675

@pgpuspb

Copyright © Peter the Great Saint-Petersburg Polytechnic University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Wearable electronics

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Flexible Electronics

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project