Home > Press > Promising discovery could lead to a better, cheaper solar cell: Scientific instrument made at McGill reveals liquid-like properties of a solid substance
![]() |
Abstract:
McGill University researchers have gained tantalizing new insights into the properties of perovskites, one of the world's most promising materials in the quest to produce a more efficient, robust and cheaper solar cell.
In a study published today in Nature Communications, the researchers used a multi-dimensional electronic spectrometer (MDES) - a unique instrument hand-built at McGill - to observe the behaviour of electrons in cesium lead iodide perovskite nanocrystals. The MDES that made these observations possible is capable of measuring the behaviour of electrons over extraordinarily short periods of time - down to 10 femtoseconds, or 10 millionths of a billionth of a second. Perovskites are seemingly solid crystals that first drew attention in 2014 for their unusual promise in future solar cells that might be cheaper or more defect tolerant.
A most exciting discovery
"It's the most exciting result that I have been a part of since starting in science in 1995," said senior author and McGill chemistry professor Patanjali Kambhampati of the discovery of perovskite's liquid-solid duality. "Instead of searching for perfection in defect-free silicon microelectronics, here we have a defective thing that's defect-tolerant. And now we know a bit more about why that is."
Solids acting like liquids
As the researchers looked more closely at the crystals using the MDES, what they saw was something that challenges our conventional understanding of the difference between liquids and solids.
"Since childhood we have learned to discern solids from liquids based on intuition: we know solids have a fixed shape, whereas liquids take the shape of their container," said Hélène Seiler, lead author of the research and a former PhD student in the Department of Chemistry at McGill who is currently at the Department of Physical Chemistry, Fritz-
Haber-Institut at the Max-Planck Institute. "But when we look at what the electrons in this material are actually doing in response to light, we see that they behave like they typically do in a liquid. Clearly, they are not in a liquid - they are in a crystal - but their response to light is really liquid-like. The main difference between a solid and a liquid is that a liquid has atoms or molecules dancing about, whereas a solid has the atoms or molecules is more fixed in space as on a grid."
###
The research was funded by: Natural Sciences and Engineering Research Council of Canada (NSREC), Canada Foundation for Innovation (CFI), Swiss National Science Foundation, Fonds de Recherche du Québec - Nature et technologies (FQRNT)
####
About McGill University
Founded in Montreal, Quebec, in 1821, McGill is a leading Canadian post-secondary institution. It has two campuses, 11 faculties, 13 professional schools, 300 programs of study and over 40,000 students, including more than 10,200 graduate students. McGill attracts students from over 150 countries around the world, its 12,800 international students making up 31% per cent of the student body. Over half of McGill students claim a first language other than English, including approximately 19% of our students who say French is their mother tongue.
For more information, please click here
Contacts:
Katherine Gombay
514-398-2189
@McGillU
Copyright © McGill University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Perovskites
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
Chemical reactions can scramble quantum information as well as black holes April 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |