Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists tame Josephson vortices

Experimental setup. The blue and orange indicate niobium and copper, respectively. The ellipse marks the area of ??the Josephson junction. The cobalt-chromium-coated tip oscillates, excited by a piezo element (dither). The optic fiber is used to read out the oscillations

CREDIT
Viacheslav Dremov et al./Nature Communications
Experimental setup. The blue and orange indicate niobium and copper, respectively. The ellipse marks the area of ??the Josephson junction. The cobalt-chromium-coated tip oscillates, excited by a piezo element (dither). The optic fiber is used to read out the oscillations CREDIT Viacheslav Dremov et al./Nature Communications

Abstract:
MIPT physicists have learned how to locally control Josephson vortices. The discovery can be used for quantum electronics superconducting devices and future quantum processors. The work has been published in the prestigious scientific journal Nature Communications.

Scientists tame Josephson vortices

Moscow, Russia | Posted on November 1st, 2019

A Josephson vortex is a vortex of currents occurring in a system of two superconductors separated by a weak link -- a dielectric, a normal metal, etc. -- in the presence of an external magnetic field. In 1962, Brian Josephson predicted the flow of a supercurrent through a thin layer of insulating material separating two pieces of superconducting material. This current was named the Josephson current, and the coupling of superconductors was dubbed a Josephson junction. A so-called weak link occurs between the two superconductors through a dielectric or a nonsuperconducting metal, and macroscopic quantum coherence develops.

When this system is placed in a magnetic field, the superconductors push the magnetic field out. The greater the magnetic field applied, the more the superconductivity resists the magnetic field penetrating into the Josephson system. However, the weak link is a place in which the field can penetrate in the form of individual Josephson vortices carrying magnetic flux quanta. Josephson vortices are often seen as real topological objects, 2 pi-phase singularities that are hard to observe and manipulate.

Researchers from the MIPT Laboratory of Topological Quantum Phenomena in Superconducting Systems applied a magnetic force microscope to study Josephson vortices in a system of two superconducting niobium contacts interlaid with a copper layer acting as a weak link.

"We have demonstrated that in the planar (flat) superconductor-normal metal-superconductor contacts, Josephson vortices have a unique imprint," said the paper's senior author, Vasily Stolyarov of MIPT. "We found this by observing these structures with a magnetic force microscope. Based on this discovery, we demonstrated the possibility of locally generating Josephson vortices, which can be manipulated by the magnetic cantilever of a microscope. Our research is yet another step toward creating future superconducting quantum computing machines."

The variety of ultrasensitive superconducting devices, qubits, and architectures for quantum computing is growing rapidly. It is expected that superconducting quantum electronic devices will challenge conventional semiconductor devices very soon. These new devices will rely on Josephson junctions like the one indicated by the yellow closed arrow in figure 1.

"It is quite difficult to visualize Josephson vortices, as they are poorly localized," Stolyarov added. "We discovered a way to measure the dissipation that occurs during the creation and destruction of such a vortex in the weak link area. Dissipation is a minor release of energy. In our case, the energy is released when a vortex moves in a planar Josephson contact. Thus, using our magnetic force microscope, we can successfully detect not only the static magnetic portrait of the superconducting structure but also the dynamic processes in it."

The authors of the paper demonstrated a method for remote generation, detection, and manipulation of Josephson vortices in planar Josephson junctions using a low-temperature magnetic force microscope. With certain parameters (probe location, temperature, external magnetic field, electric current flow through the sample), the team observed a particular response of the microscope cantilever. This was followed by the appearance of sharp rings/arcs in the images. The researchers identified these features as bifurcation points between adjacent Josephson states characterized by a different number or position of Josephson vortices inside the junction. The process is accompanied by the exchange of energy between the cantilever and the sample at the bifurcation points and demonstrates that a magnetic force microscope can provide unique information on the state of a Josephson vortex.

It is expected that the results of the research will serve as an impetus and a basis for developing new methods of local noncontact diagnostics and management of modern superconducting devices and superconducting quantum electronics.

###

The study was supported by the Russian Science Foundation and the Ministry of Education and Science of the Russian Federation.

####

For more information, please click here

Contacts:
Varvara Bogomolova

7-916-147-4496

@phystech_en

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Quantum Physics

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

Magnetism/Magnons

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Quantum Computing

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Quantum nanoscience

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project