Home > Press > GLOBALFOUNDRIES Qualifies Synopsys Fusion Design Platform on 12LP FinFET Platform
Abstract:
Highlights:
Qualification includes leading products Design Compiler NXT, IC Compiler II, StarRC, PrimeTime, and IC Validator
Collaboration delivers a combination of accuracy and highest performance with Fusion Design Platform on GLOBALFOUNDRIES 12LP targeting AI, cloud computing, and high-end consumer SoCs
Synopsys, Inc. (Nasdaq: SNPS) today announced that GLOBALFOUNDRIES® (GF®) has qualified Synopsys' Fusion Design Platform™ for its 12-nanometer (nm) Leading-Performance (12LP) FinFET platform. Optimized for the high-performance and low-power requirements of artificial intelligence (AI), cloud computing, and mobile system-on-chips (SoCs), the production-ready flow is based on the silicon-proven RTL-to-GDSII 12LP foundry reference flow and incorporates Synopsys Advanced Fusion technologies for best quality-of-results (QoR) and time-to-results (TTR) in FinFET designs.
"We want to ensure that GF customers that want to use our differentiated FinFET technology for their next-generation chip designs have the easiest possible path to implementation and production," said Richard Trihy, vice president, Engineering and Design Enablement at GF. "GF's 12LP FinFET platform delivers a 10 percent improvement in logic density and more than a 15 percent improvement in performance. This, combined with the QoR and TTR advantages provided by the Synopsys Fusion Design Platform, enable our mutual customers to differentiate their products in artificial intelligence, cloud computing, and high-end consumer SoCs."
The Synopsys Fusion Design Platform optimized for GF's 12LP FinFET platform utilized the latest enhancements in the digital implementation and signoff flow to maximize GF's 12LP performance and power benefits. Advanced RC modeling and pin access optimization in Design Compiler® Graphical and Design Compiler NXT synthesis solutions enable tighter correlation with IC Compiler™ II place-and-route, leading to faster design convergence. Logic restructuring, a key feature of Advanced Fusion Technology, enables fast area, timing, power, or congestion-based re-synthesis. ECO Fusion reduces the need for excessive engineering change order (ECO) iterations by allowing rapid design changes during the physical implementation, resulting in faster timing convergence.
The key tools and technologies of the Synopsys Fusion Design Platform certified for GF's 12LP FinFET platform include:
IC Compiler II place-and-route with Advanced Fusion Technology: Fully automated flow with comprehensive GF 12LP rules support. Deployment of advanced legalizer, pin density-aware placement, total power optimization, logic restructuring, and ECO closure.
Design Compiler Graphical and Design Compiler NXT RTL synthesis: Advanced power, performance, and area (PPA) optimizations, congestion reduction, pin access-aware optimization, tight correlation, and physical guidance for IC Compiler II.
IC Validator physical signoff: Physical signoff including DRC, LVS, and Fill. Innovative Explorer DRC and Live DRC technologies for enhanced productivity.
PrimeTime® timing signoff: Advanced variation modeling for low voltages, and enhanced ECO technologies with support for new physical design rules.
StarRC™ extraction signoff: Advanced modeling to handle the complexity of FinFET devices, as well as a common technology file for parasitic extraction consistency from synthesis to place-and-route to signoff.
"Synopsys and GF have a long-standing collaboration focused on enabling our mutual customers with proven technologies to deliver innovative next-generation chip designs," said Michael Sanie, vice president of marketing and strategy for the Design Group at Synopsys. "Through the qualification of Synopsys' Fusion Design Platform on a production ready flow, companies creating chips for AI, cloud, and high-end consumer applications can now have the confidence and ability to meet their aggressive time-to-market windows."
####
About Synopsys, Inc.
Synopsys, Inc. (Nasdaq: SNPS) is the Silicon to Software™ partner for innovative companies developing the electronic products and software applications we rely on every day. As the world's 15th largest software company, Synopsys has a long history of being a global leader in electronic design automation (EDA) and semiconductor IP and is also growing its leadership in software security and quality solutions. Whether you're a system-on-chip (SoC) designer creating advanced semiconductors, or a software developer writing applications that require the highest security and quality, Synopsys has the solutions needed to deliver innovative, high-quality, secure products.
For more information, please click here
Contacts:
James Watts
Synopsys, Inc.
650-584-1625
Copyright © Synopsys, Inc.
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Artificial Intelligence
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024
Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |