Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Inspired by natural signals in living cells, researchers design artificial gas detector: Tiny box puts itself together and glows

Researchers at the University of Tokyo have built a simple, cheap, highly sensitive and specific detector of liquefied petroleum gas (LPG). The gas is detected by a tiny box called a nanocube, about one-fortieth the size of a human red blood cell. The nanocube glows blue under fluorescent light when it is filled with the gas. Originally published in Communications Chemistry DOI: 10.1038/s42004-019-0212-6

CREDIT
Zhan et al., CC-BY
Researchers at the University of Tokyo have built a simple, cheap, highly sensitive and specific detector of liquefied petroleum gas (LPG). The gas is detected by a tiny box called a nanocube, about one-fortieth the size of a human red blood cell. The nanocube glows blue under fluorescent light when it is filled with the gas. Originally published in Communications Chemistry DOI: 10.1038/s42004-019-0212-6 CREDIT Zhan et al., CC-BY

Abstract:
A cube one-fortieth the size of a human red blood cell can glow when it detects flammable gas. The nanocube, designed by chemists at the University of Tokyo, is part of a research project to develop artificial systems that mimic the complex chain of events inside living cells.

Inspired by natural signals in living cells, researchers design artificial gas detector: Tiny box puts itself together and glows

Tokyo, Japan | Posted on September 13th, 2019

The research team has worked on the nanocube project for over a decade. A key feature of the nanocube, just two nanometers on each side, is that it puts itself together, attempting to mimic the way proteins and DNA put themselves together in living cells.

Mimicking life

"People automatically think about devices when we talk about sensors. But there are many examples of natural sensors in the body," said Professor Shuichi Hiraoka, the lead researcher on the project from the University of Tokyo's Department of Basic Science.

The basic chain of events in a cell to detect and report some signal has three steps: 1) A receptor detects the target molecule, 2) the receptor sends a signal to the reporter and 3) the reporter transmits the signal elsewhere in the cell.

The glowing nanocube simplifies the system because it is both the receptor (the inside of the cube) and the reporter (the glow).

"This way, we avoid the problem of transferring information from the receptor to the reporter," explained Hiraoka.

Nanocube sensors fully envelop the molecules they contain, meaning they could be especially useful for distinguishing between molecules that are shaped like simple chains of different lengths (alkanes) without unique functional groups.

Glowing with gas

The latest analysis reveals that the nanocubes glow blue under ultraviolet (UV) light when filled with liquefied petroleum gas (LPG), a type of flammable gas.

The chemical that the cube is made from is a white powder when dry, but when mixed in water, six gear- or snowflake-shaped molecules automatically connect to form the cubes. The natural glow, or fluorescence, of the nanocubes is a balance of two competing physical characteristics of those molecules: The glow is limited when the molecules are stacked like pancakes, but is enhanced when the molecules are locked in place and slightly stretched apart from each other.

Three molecules come together at each corner of the cube, so their edges are "stacked" together, limiting the glow. When the cube fills with gas, the corners bulge slightly and that stretch enhances the glow.

Nanocube gas detectors

The researchers built a cheap, simple gas detector using only the nanocubes, a common UV light and a fluorescent light detector.

The nanocubes are as sensitive as any current gas detector, meaning they could detect very low amounts of LPG.

However, the nanocubes are incredibly specific to LPG. They do not detect other similar types of flammable gas, such as methane (natural gas) or carbon dioxide (CO2). This specificity likely occurs because exactly three molecules of LPG slot in like blocks in the game Tetris for a perfect fit inside the nanocube.

Common gas detectors do not have this specificity and will sound an alarm for any type of dangerous gas.

"The fact that common sensors cannot distinguish these similar gases is really no problem, because they are all dangerous to us," said Hiraoka.

Rather than to design a new gas detector, the researchers' true goal is to mimic the complex chain of events to detect and report signals in living cells.

Researchers are planning additional projects to alter the building blocks of the nanocubes so that the cubes can detect different molecules and report different signals.

####

About University of Tokyo
The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

For more information, please click here

Contacts:
Shuichi Hiraoka

81-035-465-7659

Research contact

Professor Shuichi Hiraoka
Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
Tel: +81-3-5465-7659
Email:

Press Contact

Ms. Caitlin Devor
Division for Strategic Public Relations, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN
Tel: +81-3-5841-0876
Email:

Public Relations Office

Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
Tel: +81-3-5454-4920
Email:

Copyright © University of Tokyo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Research Article

Graduate School of Arts and Sciences:

Department of Basic Science (Japanese):

Hiraoka Group laboratory website:

Hiraoka Group Facebook page (Japanese):

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project