Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Cellulose nanofibers to improve the sensitivity of lateral flow tests

Abstract:
Scientists from the ICN2 Nanobioelectronics and Biosensors Group led by ICREA Prof. Arben Merkoçi have carried out a research to enhance the sensitivity of lateral flow tests. They have proposed to include cellulose nanofibers in the test area, which has produced an average increase of 36.6 % of the colorimetric signal on positive tests. The proposed modification can be easily applied to any kind of lateral flow strip, enabling its use in point-of-care applications.

Cellulose nanofibers to improve the sensitivity of lateral flow tests

Barcelona, Spain | Posted on August 7th, 2019

Lateral flow tests are used across a wide range of sectors including human health and pharma, environmental testing, animal health, food and feed testing, and plant and crop health. They are paper-based biosensors that fulfil all the demands of the World Health Organization for devices: the ASSURED criteria require them to be affordable, sensitive, selective, user-friendly, rapid and robust and derivable to the end-user. Paradoxically, sensitivity is not always assured.

Their way of working is simple: a fluid sample, with or without a specific analyte, is put in one end of the strip. Certain particles (transducers) prepared to attach to that analyte are dragged along by the fluid. A large amount of antibodies are placed in the test line to retain the analyte marked with the transducers. In case the analyte is present in the sample, the test line will be coloured because of the transducers. Otherwise, the particles will continue their journey to the end of the strip.

Researchers from the ICN2, in collaboration with University of Girona, have found a way to increase remarkably the sensitivity of the test with only a slight increase in time. The research has been led by ICREA Prof. Arben Merkoçi, Group Leader of the ICN2 Nanobioelectronics and Biosensors Group, and counted with the participation of the ICN2 Advanced AFM Laboratory too, led by Dr Neus Domingo. The results have been published in Biosensors and Bioelectronics with Dr Daniel Quesada-González, now researcher at the spin-off Paperdropdx, as its first author.

One way to enhance the sensitivity of the strips has to do with their porosity. If pores are big enough, the transducers may go through them instead of stopping in the test line, decreasing sensitivity. On the other side, if pores are too small, sensitivity increases, but the sample will flow slower.

The new research proposes to decrease the pore size only on the test area by including cellulose nanofibers in that zone. They are biocompatible with antibodies, thus increasing the areas where they can be placed on the surface of the strip, where the colour of the transducer particles is best appreciated. Thanks to this modification, the researchers have observed an average increase of 36.6 % of the colorimetric signal, meaning that more transducer particles were retained in the test line. They have also demonstrated that this retention is only due to the interaction of the analytes with the antibodies, not because of any interactions of the transducers with cellulose nanofibers, which avoids false positives.

This strategy could be used to discriminate better between similar concentrations of a given analyte, which is useful especially on diagnostic applications. The higher level of sensitivity allows a quantitative analysis of the samples using a simple camera device like the ones integrated in smartphones. The proposed modification is cheap and can be easily applied, enabling its use in point-of-care applications.

####

For more information, please click here

Contacts:
Francisco J. Pańos

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article reference

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project