Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Can break junction techniques still offer quantitative information at single-molecule level

This is a schematic representation of a typical conductance-distance trace in the opening process of the two electrodes. The total conductance (G, red solid line) of a single-molecule junction is composed of the through-space tunneling (Gs, transparent black line) and through-molecule tunneling (Gm, transparent red line) contributions. After breaking down of the junction, a gold-molecule-solution-gold channel (Gc, transparent green line) appears. The three gray areas show regions in which the conductance cannot be measured.

CREDIT
©Science China Press
This is a schematic representation of a typical conductance-distance trace in the opening process of the two electrodes. The total conductance (G, red solid line) of a single-molecule junction is composed of the through-space tunneling (Gs, transparent black line) and through-molecule tunneling (Gm, transparent red line) contributions. After breaking down of the junction, a gold-molecule-solution-gold channel (Gc, transparent green line) appears. The three gray areas show regions in which the conductance cannot be measured. CREDIT ©Science China Press

Abstract:
Single-molecule break junction techniques offer unique insights into the charge transport at the molecular level. The conductance through single-molecule junction consists of the through-space tunneling and the through-molecule tunneling conductance. However, the existence of through-space tunneling, which is ubiquitous at the single-molecule level, makes the quantitative extraction of the intrinsic molecular signals challenging.

Can break junction techniques still offer quantitative information at single-molecule level

Beijing, China | Posted on June 18th, 2019

Although its powerful capability to contact individual molecules, single-molecule break junction techniques are intrinsically not capable of intervening the actual signatures of the junction, such as binding geometries, number of molecules in the junction, interaction between the junction and neighbor molecules, etc.

The widely accepted method to extract the conductance information of a single molecule is to obtain statistics in thousands of break junction processes. Typically, a conductance histogram is plotted to find the most probable conductance. However, to which extent should we trust the obtained conductance? Since the result may affected by many stochastic events, such as junction formation probability, early rupture of the molecular junction, etc., in the break junction process.

What's more, as the focus of the state-of-art single-molecule break junction measurements has gradually shifted from strong interaction to weak interaction systems (such as supramolecular junctions) and from static processes to more dynamic processes (such as diffusion and chemical reaction processes), can break junction techniques still offer quantitative information at single-molecule level in these systems?

Very recently, Professor Wenjing Hong's group in Xiamen University, working together with Prof. Jielou Liao's group in University of Science and Technology of China, explored in detail the quantitative characterization capability of break junction techniques in single-molecule systems through an analytical model (Figure 1). This model describes the conductance changes during the opening process of two gold electrodes and validates the capability of conductance and displacement analyses during the break junction experiments of OAE-type molecule junctions. Based on this model, they demonstrated that the break junction technique can be used to detect the conductance of the molecular system with weak interactions under low junction formation probabilities and early rupture of the formed junction before it reaches a fully-stretched configuration. Using the established simulation approach, they further proved that the break junction technique can offer a quantitative understanding of molecular assembly, diffusion and even reaction processes with complementary conductance and displacement analyses.

###

This work was supported by the National Key R&D Project of China (2017YFA0204902), the National Natural Science Foundation of China (21722305, 21673195, 21703188, 21790360), the Youth Innovation Promotion Association CAS (No. 2015024).

####

For more information, please click here

Contacts:
Hong Wenjing

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: Pan Zhi-chao, Li Jin, Chen Lijue, Tang Yongxiang, Shi Jia, Liu Junyang, Liao Jie-lou, Hong Wenjing. Analytical modeling of the junction evolution in single-molecule break junctions: towards quantitative characterization of the time-dependent process. Sci. China Chem., 2019, DOI:10.1007/s11426-019-9493-6:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project