Home > Press > New interaction between thin film magnets discovered: Physicists of Johannes Gutenberg University Mainz lay the foundations for new three-dimensional spin structures
Abstract:
We ubiquitously stream videos, we download audiobooks to mobile devices, and we store huge numbers of photos on our devices. In short, the storage capacity we need is growing rapidly. Researchers are working to develop new data storage options. One possibility is the racetrack memory device where the data is stored in nanowires in the form of oppositely magnetized areas, so-called domains. The results of this research have recently been published in the scientific journal Nature Materials.
A research team from Johannes Gutenberg University Mainz (JGU) in Germany, together with colleagues from Eindhoven University of Technology in the Netherlands as well as Daegu Gyeongbuk Institute of Science and Technology and Sogang University in South Korea, has now made a discovery that could significantly improve these racetrack memory devices. Instead of using individual domains, in the future one could store the information in three-dimensional spin structures, making the memories faster and more robust and providing a larger data capacity.
"We were able to demonstrate a hitherto undiscovered interaction," explained Dr. Kyujoon Lee of Mainz University. "It occurs between two thin magnetic layers separated by a non-magnetic layer." Usually, spins align either parallel or antiparallel to each other. This would also be expected for such two separate magnetic layers. However, the situation is different in this work as the researchers have been able to show that in particular systems the spins in the two layers are twisted against each other. More precisely, they couple to be aligned perpendicular with one another at an angle of 90 degrees. This new interlayer coupling interaction was theoretically explained through theoretical calculations performed by the project partners at the Peter Grünberg Institute (PGI) and the Institute for Advanced Simulation (IAS) at Forschungszentrum Jülich.
The Mainz-based researchers examined a number of different combinations of materials grown in multi-layers. They were able to show that this previously unknown interaction exists in different systems and can be engineered by the design of the layers. Theoretical calculations allowed them to understand the underlying mechanisms of this novel effect.
With their results, the researchers reveal a missing component in the interaction between such layers. "These results are very interesting to the scientific community in that they show that the missing antisymmetric element of interlayer interaction exists," commented Dr. Dong-Soo Han from JGU. This opens up the possibility of designing various new three-dimensional spin structures, which could lead to new magnetic storage units in the long term.
Professor Mathias Kläui, senior author of the publication, added: "I am very happy that this collaborative work in an international team has opened a new path to three-dimensional structures that could become a key enabler for new 3D devices. Through the financial support of the German Research Foundation and the German Academic Exchange Service, the DAAD, we were able to exchange students, staff, and professors with our foreign partners in order to realize this exciting work."
####
For more information, please click here
Contacts:
Dr. Kyujoon Lee
49-613-139-27621
Copyright © Johannes Gutenberg University Mainz
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Magnetism/Magnons
Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024
Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023
Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023
Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||