Home > Press > NIST physicists 'teleport' logic operation between separated ions
![]() |
Infographic explaining how gate teleportation works. CREDIT NIST |
Abstract:
Physicists at the National Institute of Standards and Technology (NIST) have teleported a computer circuit instruction known as a quantum logic operation between two separated ions (electrically charged atoms), showcasing how quantum computer programs could carry out tasks in future large-scale quantum networks.
Quantum teleportation transfers data from one quantum system (such as an ion) to another (such as a second ion), even if the two are completely isolated from each other, like two books in the basements of separate buildings. In this real-life form of teleportation, only quantum information, not matter, is transported, as opposed to the Star Trek version of "beaming" entire human beings from, say, a spaceship to a planet.
Teleportation of quantum data has been demonstrated previously with ions and a variety of other quantum systems. But the new work is the first to teleport a complete quantum logic operation using ions, a leading candidate for the architecture of future quantum computers. The experiments are described in the May 31 issue of Science.
"We verified that our logic operation works on all input states of two quantum bits with 85 to 87% probability--far from perfect, but it is a start," NIST physicist Dietrich Leibfried said.
A full-scale quantum computer, if one can be built, could solve certain problems that are currently intractable. NIST has contributed to global research efforts to harness quantum behavior for practical technologies, including efforts to build quantum computers.
For quantum computers to perform as hoped, they will probably need millions of quantum bits, or "qubits," as well as ways to conduct operations between qubits distributed across large-scale machines and networks. Teleportation of logic operations is one way do that without direct quantum mechanical connections (physical connections for the exchange of classical information will still be needed).
The NIST team teleported a quantum controlled-NOT (CNOT) logic operation, or logic gate, between two beryllium ion qubits located more than 340 micrometers (millionths of a meter) apart in separate zones of an ion trap, a distance that rules out any substantial direct interaction. A CNOT operation flips the second qubit from 0 to 1, or vice versa, only if the first qubit is 1; nothing happens if the first qubit is 0. In typical quantum fashion, both qubits can be in "superpositions" in which they have values of both 1 and 0 at the same time.
The NIST teleportation process relies on entanglement, which links the quantum properties of particles even when they are separated. A "messenger" pair of entangled magnesium ions is used to transfer information between the beryllium ions (see infographic).
The NIST team found that its teleported CNOT process entangled the two magnesium ions--a crucial early step--with a 95% success rate, while the full logic operation succeeded 85% to 87% of the time.
"Gate teleportation allows us to perform a quantum logic gate between two ions that are spatially separated and may have never interacted before," Leibfried said. "The trick is that they each have one ion of another entangled pair by their side, and this entanglement resource, distributed ahead of the gate, allows us to do a quantum trick that has no classical counterpart."
"The entangled messenger pairs could be produced in a dedicated part of the computer and shipped separately to qubits that need to be connected with a logic gate but are in remote locations," Leibfried added.
The NIST work also integrated into a single experiment, for the first time, several operations that will be essential for building large-scale quantum computers based on ions, including control of different types of ions, ion transport, and entangling operations on selected subsets of the system.
To verify that they performed a CNOT gate, the researchers prepared the first qubit in 16 different combinations of input states and then measured the outputs on the second qubit. This produced a generalized quantum "truth table" showing the process worked.
In addition to generating a truth table, the researchers checked the consistency of the data over extended run times to help identify error sources in the experimental setup. This technique is expected to be an important tool in characterizing quantum information processes in future experiments.
###
This work was supported by the Office of the Director of National Intelligence, the Intelligence Advanced Research Projects Activity and the Office of Naval Research.
Paper: Y. Wan, D. Kienzler, S. Erickson, K.H. Mayer, T.R. Tan, J. Wu, H.M. Vasconcelos, S. Glancy, E. Knill, D.J. Wineland, A.C. Wilson and D. Leibfried. 2019. Quantum gate teleportation between separated zones of a trapped-ion processor. Science. May 31.
####
For more information, please click here
Contacts:
Laura Ost
Copyright © National Institute of Standards and Technology (NIST)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Quantum communication
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Laboratories
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Quantum Computing
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Programmable electron-induced color router array May 14th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |