Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New fiber-shaped supercapacitor for wearable electronics

This is a schematic illustration to the amphiphilic core-sheath structured cnt-au@ocnt-pani fiber electrode, and a LCD showing the name of Fudan University powered by the energy textile.

CREDIT
©Science China Press
This is a schematic illustration to the amphiphilic core-sheath structured cnt-au@ocnt-pani fiber electrode, and a LCD showing the name of Fudan University powered by the energy textile. CREDIT ©Science China Press

Abstract:
Fiber electrodes, as the key part of fiber-shaped supercapacitors for wearable electronics, are widely explored on the basis of carbon nanomaterials such as carbon nanotubes (CNTs) and graphene fibers due to their high mechanical strength, electrical conductivity and specific surface area. The incorporation of carbon nanomaterials with other pseudocapacitive materials is a common strategy to improve the electrochemical properties of resulting fiber-shaped supercapacitors. However, the pseudocapacitance is far from fully developed especially at high rate owing to the insufficient electron supply and ion accessibility during electrochemical reactions. Hence developing new fiber electrodes is very important to realize efficient electron supply and ion accessibility simultaneously in one single fiber.

New fiber-shaped supercapacitor for wearable electronics

Beijing, China | Posted on April 19th, 2019

Recently, Prof. Huisheng Peng's group from Fudan University, China designed a novel family of amphiphilic core-sheath structured CNT composited fiber, i.e., CNT-polyaniline to meet the above requirements in Science China Materials (DOI: 10.1007/s40843-018-9408-3).

Prof. Peng stated: "The amphiphilic core-sheath structured CNT composited fiber can achieve more ion accessibility across the sheath originating from the enhanced interactions between OCNTs and PANI, and faster electron transport across the core attributing to the sufficient deposition of Au nanoparticles on the CNTs. This electrode design can improve both the electrical conductivity and electrochemical activity of one single fiber electrode."

They systematically studied the morphologies and electrochemical properties of electrodeposited PANI on the hydrophilic OCNT and hydrophobic CNT sheath. More oxygen-containing functional groups and defect sites on hydrophilic OCNT sheath are beneficial to the infiltration and electrodeposition of aniline in the aqueous electrolyte, improving the interactions between OCNTs and PANI than those between CNTs and PANI. As a result, PANI molecules are less aggregated with more accessibility to the ions in the electrolyte during charging and discharging processes, realizing a greater pseudocapacitance utilization. As to the Au-deposited CNT core, the homogeneous distribution of Au nanoparticles facilitates the electron transport among CNTs which finally reduces the internal resistance. Impressively, the demonstrates both high specific capacitance and rate capability, i.e., 256 F cm?3 at a high current density of 50 A cm?3 with a 79% retention of that at 0.5 A cm?3 (324 F cm?3). A remarkable energy density and power density of 7.2 mWh cm?3 and 10 W cm?3 are achieved in the resulting fiber-shaped supercapacitors, respectively.

"Our new concept, increasing the electron supply and ion accessibility simultaneously, can guide the future electrode design aiming at high performances," says Prof. Peng. "And the strategy of structure design and material utilization can be generalized to other energy storage systems including but not limited to lithium-ion and metal-air batteries. We believe this finding will be of interest to readers in energy science, materials chemistry and catalysis."

###

This work was supported by the Ministry of Science and Technology, the National Natural Science Foundation of China, Shanghai Science and Technology Committee, and Yanchang Petroleum Group.

####

For more information, please click here

Contacts:
YAN Bei

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: Xuemei Fu, Zhuoer Li, Limin Xu, Meng Liao, Hao Sun, Songlin Xie, Xuemei Sun, Bingjie Wang and Huisheng Peng, "Amphiphilic core-sheath structured composite fiber for comprehensively performed supercapacitor", Science China Materials. doi: 10.1007/s40843-018-9408-3:

Related News Press

Wearable electronics

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project