Home > Press > Mystery of negative capacitance in perovskite solar cells solved
Abstract:
On the verge of outcompeting current thin-film solar cells, perovskite solar cells seem to embody an ideal solar cell: highly efficient and low-cost - if there was not the issue of a weak long-term stability, which remains a challenge. Related to this are peculiar phenomena occurring in perovskite materials and devices, where very slow microscopic processes can furnish them with a kind of "memory effect".
For instance, measuring the efficiency of a perovskite solar cell can depend on things like how long the device is illuminated prior to measurement or how the voltage was applied. A few years ago, this effect, known as current-voltage hysteresis, led to disputes on how to accurately determine the efficiency of perovskites. Another example of these obscure processes is a (partial) recovery of a previously degraded solar cell during day-night cycling.
Such effects are a concern when measuring the solar cells' performance as a function of frequency, which is a typical measurement for characterizing these devices in more detail (impedance spectroscopy). They lead to large signals at low frequencies (Hz to mHz) and giant capacitance values for the (mF/cm2), including strange, "unphysical" negative values that are still a puzzle to the research community.
Now, chemical engineers from the lab of Anders Hagfeldt at EPFL have solved the mystery. Led by Wolfgang Tress, a scientist in Hagfeldt's lab, they found that the large perovskite capacitances are not classical capacitances in the sense of charge storage, but just appear as capacitances because of the cells' slow response time.
The researchers show this by measurements in the time domain and with different voltage scan rates. They find that the origin of the apparent capacitance is a slow modification of the current passing the contact of the solar cells, which is regulated by a slow accumulation of mobile ionic charge. A slowly increasing current appears like a negative capacitance in the impedance spectra.
The work sheds light onto the interaction between the photovoltaic effect in these devices and the ionic conductivity of perovskite materials. Gaining such in-depth understanding contributes to the endeavor to tailored, stable perovskite solar cells.
###
Other contributors
Sharif University of Technology (Iran)
Funding
Swiss National Science Foundation (Ambizione Energy grant)
Ministry of Science, Research, and Technology of Iran
Iranian Nano Technology Initiative Council
Reference
Firouzeh Ebadi, Nima Taghavinia, Raheleh Mohammadpour, Anders Hagfeldt, Wolfgang Tress. Origin of apparent light-enhanced and negative capacitance in perovskite solar cells. Nature Communications 05 April 2019. DOI: 10.1038/s41467-019-09079-z
####
For more information, please click here
Contacts:
Nik Papageorgiou
41-216-932-105
Copyright © Ecole Polytechnique Fédérale de Lausanne
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Perovskites
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
Chemical reactions can scramble quantum information as well as black holes April 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||