Home > Press > Mystery of negative capacitance in perovskite solar cells solved
Abstract:
On the verge of outcompeting current thin-film solar cells, perovskite solar cells seem to embody an ideal solar cell: highly efficient and low-cost - if there was not the issue of a weak long-term stability, which remains a challenge. Related to this are peculiar phenomena occurring in perovskite materials and devices, where very slow microscopic processes can furnish them with a kind of "memory effect".
For instance, measuring the efficiency of a perovskite solar cell can depend on things like how long the device is illuminated prior to measurement or how the voltage was applied. A few years ago, this effect, known as current-voltage hysteresis, led to disputes on how to accurately determine the efficiency of perovskites. Another example of these obscure processes is a (partial) recovery of a previously degraded solar cell during day-night cycling.
Such effects are a concern when measuring the solar cells' performance as a function of frequency, which is a typical measurement for characterizing these devices in more detail (impedance spectroscopy). They lead to large signals at low frequencies (Hz to mHz) and giant capacitance values for the (mF/cm2), including strange, "unphysical" negative values that are still a puzzle to the research community.
Now, chemical engineers from the lab of Anders Hagfeldt at EPFL have solved the mystery. Led by Wolfgang Tress, a scientist in Hagfeldt's lab, they found that the large perovskite capacitances are not classical capacitances in the sense of charge storage, but just appear as capacitances because of the cells' slow response time.
The researchers show this by measurements in the time domain and with different voltage scan rates. They find that the origin of the apparent capacitance is a slow modification of the current passing the contact of the solar cells, which is regulated by a slow accumulation of mobile ionic charge. A slowly increasing current appears like a negative capacitance in the impedance spectra.
The work sheds light onto the interaction between the photovoltaic effect in these devices and the ionic conductivity of perovskite materials. Gaining such in-depth understanding contributes to the endeavor to tailored, stable perovskite solar cells.
###
Other contributors
Sharif University of Technology (Iran)
Funding
Swiss National Science Foundation (Ambizione Energy grant)
Ministry of Science, Research, and Technology of Iran
Iranian Nano Technology Initiative Council
Reference
Firouzeh Ebadi, Nima Taghavinia, Raheleh Mohammadpour, Anders Hagfeldt, Wolfgang Tress. Origin of apparent light-enhanced and negative capacitance in perovskite solar cells. Nature Communications 05 April 2019. DOI: 10.1038/s41467-019-09079-z
####
For more information, please click here
Contacts:
Nik Papageorgiou
41-216-932-105
Copyright © Ecole Polytechnique Fédérale de Lausanne
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Perovskites
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
Chemical reactions can scramble quantum information as well as black holes April 5th, 2024
Discoveries
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Materials/Metamaterials/Magnetoresistance
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |