Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chemicals induce dipoles to damp plasmons: Rice University-led study finds molecules alter gold nanoparticles' electronic properties

Credit: Alese Pickering/Rice University
Credit: Alese Pickering/Rice University

Abstract:
The light scattered by plasmonic nanoparticles is useful, but some of it gets lost at the surface and scientists are now starting to figure out why.

Chemicals induce dipoles to damp plasmons: Rice University-led study finds molecules alter gold nanoparticles' electronic properties

Houston, TX | Posted on March 22nd, 2019

In novel experiments at Rice University and the Johannes Gutenberg University of Mainz, along with theoretical work at Princeton University, researchers found that molecules placed on the surface of a single gold nanorod affect its plasmonic response by altering the electronic structure of the particle itself.

The finding could enhance applications like catalysis that involve plasmon-driven chemistry.

Plasmons are ripples of electrons that resonate across the surface of a metal nanoparticle when triggered by light. The light they receive at one wavelength, or color, is radiated at the same wavelength, and that can inform researchers about the particle and its environment.

Surface plasmons help sense the presence of chemicals, enable photochemistry and selectively catalyze chemical reactions. But light lost between the particle's surface and the researcher's eye can contain additional information previously not considered.

It had been thought signal loss via plasmon damping was due to chemicals adsorbed to the nanoparticle surface, perhaps through charge transfer from the metal to the chemical substances. But Stephan Link, a professor of chemistry and of electrical and computer engineering at Rice, had doubts that just one explanation would fit all studies.

They led Link, lead author Benjamin Förster and their colleagues to the discovery of an entirely different mechanism, reported this week in Science Advances.

Their strategy was to put two types of identically sized molecules with different atomic arrangements onto single gold nanorods for analysis. These molecules, cage-like carborane thiols, induced surface dipoles in the metal that in turn scattered enough of the plasmons' energy to damp their signal.

That let the researchers see and measure damping directly with no interference from other molecules or other nanorods. The proximity of the thiols, identical except for the placement of one carbon atom, to the nanorod induced unique dipole moments -- the molecules' positive and negative poles that change strength and move like the needle of a compass -- on the metal surface.

Emily Carter, a theoretical-computational scientist and dean of the School of Engineering and Applied Science at Princeton, performed detailed quantum mechanical calculations to test mechanisms that could explain the experiments.

"Plasmonic resonances have a spectral width that, together with resonance wavelengths, gives specific colors," Link said. "A narrow line gives you a truer color. So we looked at how the width of this resonance changes when we put molecules on the particle."

Not just any molecules would do. The carborane thiols, molecules of the exact same size, stick to gold nanoparticles in equal measure but are chemically different enough to change the plasmons' spectral width. That let the researchers measure plasmon damping by each type of molecule without interference from other damping mechanisms.

The plasmons that flow across a surface depend so heavily on the particle's size and shape that little attention had been paid to the effect of chemicals adsorbed to the surface, Förster said.

"If you change the surface of the nanorod, the energy gets lost in different ways," he said. "We didn't understand this at all. But if something loses energy, it's not functioning as you want it to function."

The refractive properties of the surrounding medium and averaging of signals from multiple particles of various size and shape can also affect the signal. That had also made it difficult to analyze the impact of adsorbed chemicals.

"Several contributions determine the plasmon resonance width," Link said. "But there's a fudge factor everybody invokes that nobody had really tackled in a quantitative way. A lot of people blamed charge transfer, meaning excited hot electrons moved from the metal to the molecule.

"We are saying that's not the case here," he said. "It may not be the same every time you put a molecule on a metal particle, but this gives us, for the first time, a complete quantitative study that also doesn't turn a blind eye to the chemistry at the interface. It lets us understand that the chemistry is important.

"The work is fundamental and I think it's pretty because it's so simple," Link said. "We combined the right sample, the experiment and single-particle spectroscopy with advanced theory, and we put it all together."

Förster is a former graduate student at the University of Mainz and now a research scientist at BASF who came to Rice via the Toulouse-Mainz Scholar Exchange Program for applied physics students. The Link lab's collaboration with Förster and his mentor, co-author Carsten Sönnichsen, a professor of physical chemistry at the University of Mainz, has produced three published papers.

Vincent Spata, a former postdoctoral research associate of Carter’s at Princeton, is a co-author of the paper.

The research was supported by the European Research Council, the Excellence Initiative by the Graduate School of Materials Science in Mainz, the Robert A. Welch Foundation and the Air Force Office of Scientific Research via the Department of Defense Multidisciplinary University Research Initiative.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at DOI: 10.1126/sciadv.aav0704:

Link Research Group:

The Carter Group:

The Sönnichsen Group:

Rice Department of Chemistry:

Wiess School of Natural Sciences:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Plasmonics

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Preserving the goods: A new technique for isolating intact lysosomes from cell cultures: Scientists advance the study of fragile digestive organelles by developing strategy to rapidly extract them from cells using magnetic nanoparticles January 7th, 2022

A new dimension in magnetism and superconductivity launched November 5th, 2021

Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project