Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft

Breath mint-sized samples of the ceramic aerogels developed by a UCLA-led research team. The material is 99 percent air by volume, making it super lightweight.

CREDIT
UCLA Samueli Engineering
Breath mint-sized samples of the ceramic aerogels developed by a UCLA-led research team. The material is 99 percent air by volume, making it super lightweight. CREDIT UCLA Samueli Engineering

Abstract:
UCLA researchers and collaborators at eight other research institutions have created an extremely light, very durable ceramic aerogel. The material could be used for applications like insulating spacecraft because it can withstand the intense heat and severe temperature changes that space missions endure.

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft

Los Angeles, CA | Posted on February 15th, 2019

Ceramic aerogels have been used to insulate industrial equipment since the 1990s, and they have been used to insulate scientific equipment on NASA's Mars rover missions. But the new version is much more durable after exposure to extreme heat and repeated temperature spikes, and much lighter. Its unique atomic composition and microscopic structure also make it unusually elastic.

When it's heated, the material contracts rather than expanding like other ceramics do. It also contracts perpendicularly to the direction that it's compressed -- imagine pressing a tennis ball on a table and having the center of the ball move inward rather than expanding out -- the opposite of how most materials react when compressed. As a result, the material is far more flexible and less brittle than current state-of-the-art ceramic aerogels: It can be compressed to 5 percent of its original volume and fully recover, while other existing aerogels can be compressed to only about 20 percent and then fully recover.

The research, which was published today in Science, was led by Xiangfeng Duan, a UCLA professor of chemistry and biochemistry; Yu Huang, a UCLA professor of materials science and engineering; and Hui Li of Harbin Institute of Technology, China. The study's first authors are Xiang Xu, a visiting postdoctoral fellow in chemistry at UCLA from Harbin Institute of Technology; Qiangqiang Zhang of Lanzhou University; and Menglong Hao of UC Berkeley and Southeast University.

Other members of the research team were from UC Berkeley; Purdue University; Lawrence Berkeley National Laboratory; Hunan University, China; Lanzhou University, China; and King Saud University, Saudi Arabia.

Despite the fact that more than 99 percent of their volume is air, aerogels are solid and structurally very strong for their weight. They can be made from many types of materials, including ceramics, carbon or metal oxides. Compared with other insulators, ceramic-based aerogels are superior in blocking extreme temperatures, and they have ultralow density and are highly resistant to fire and corrosion -- all qualities that lend themselves well to reusable spacecraft.

But current ceramic aerogels are highly brittle and tend to fracture after repeated exposure to extreme heat and dramatic temperature swings, both of which are common in space travel.

The new material is made of thin layers of boron nitride, a ceramic, with atoms that are connected in hexagon patterns, like chicken wire.

In the UCLA-led research, it withstood conditions that would typically fracture other aerogels. It stood up to hundreds of exposures to sudden and extreme temperature spikes when the engineers raised and lowered the temperature in a testing container between minus 198 degrees Celsius and 900 degrees above zero over just a few seconds. In another test, it lost less than 1 percent of its mechanical strength after being stored for one week at 1,400 degrees Celsius.

"The key to the durability of our new ceramic aerogel is its unique architecture," Duan said. "Its innate flexibility helps it take the pounding from extreme heat and temperature shocks that would cause other ceramic aerogels to fail."

Ordinary ceramic materials usually expand when heated and contract when they are cooled. Over time, those repeated temperature changes can lead those materials to fracture and ultimately fail. The new aerogel was designed to be more durable by doing just the opposite -- it contracts rather than expanding when heated.

In addition, the aerogel's ability to contract perpendicularly to the direction that it's being compressed -- like the tennis ball example -- help it survive repeated and rapid temperature changes. (That property is known as a negative Poisson's ratio.) It also has interior "walls" that are reinforced with a double-pane structure, which cuts down the material's weight while increasing its insulating abilities.

Duan said the process researchers developed to make the new aerogel also could be adapted to make other ultra-lightweight materials.

"Those materials could be useful for thermal insulation in spacecraft, automobiles or other specialized equipment," he said. "They could also be useful for thermal energy storage, catalysis or filtration."

###

The research was partly supported by grants from the National Science Foundation.

####

For more information, please click here

Contacts:
Amy Akmal

310-429-8689

Copyright © University of California - Los Angeles

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Aerogels

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Aspen Aerogels to Present at the 28th Annual ROTH Conference March 14th, 2016

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Automotive/Transportation

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Aerospace/Space

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project