Home > Press > ‘GO dough’ makes graphene easy to shape and mold: New form of graphene oxide is fun to play with — and solves manufacturing challenges
Highly processable and versatile, GO dough can be readily reshaped by cutting, pinching, molding and carving. |
Abstract:
GO dough can be shaped and reshaped into free-standing, 3D structures
Product is a safer version of graphene oxide powders and much lighter than dispersions
Can be readily transformed into high-quality dispersions, dense foams and hard solids
A Northwestern University team is reshaping the world of graphene.
The team has turned graphene oxide (GO) into a soft, moldable and kneadable play dough that can be shaped and reshaped into free-standing, three-dimensional structures.
Called “GO dough,” the product might be fun to play with it, but it’s more than a toy. The malleable material solves several long-standing — and sometimes explosive — problems in the graphene manufacturing industry.
“Currently graphene oxide is stored as dry solids or powders, which are prone to combustion,” said Jiaxing Huang, who led the study. “Or they have to be turned into dilute dispersions, which multiply the material’s mass by hundreds or thousands.”
Huang recounted his most recent shipment of 5 kilograms of graphene oxide, which was dispersed in 500 liters of liquid. “It had to be delivered in a truck,” he said. “The same amount of graphene oxide in dough form would weigh about 10 kilograms, and I could carry it myself.”
The research was published today (Jan. 24) in the journal Nature Communications. Huang is a professor of materials science and engineering in Northwestern’s McCormick School of Engineering.
Graphene oxide, which is a product of graphite oxidation, is often used to make graphene, a single-atom-layer thick sheet of carbon that is remarkably strong, lightweight and has potential for applications in electronics and energy storage.
Just add water
Huang’s team made GO dough by adding an ultra-high concentration of graphene oxide to water. If the team had used binding additives, they would have had to further process the material to remove these additives in order to return graphene oxide to its pure form.
“Adding binders such as plastics could turn anything into a dough state,” Huang said. “But these additives often significantly alter the material’s properties.”
After being shaped into structures, the dough can be converted into dense solids that are electrically conductive, chemically stable and mechanically hard. Or, more water can be added to the dough to transform it into a high-quality GO dispersion on demand. The dough can also be processed further to make bulk graphene oxide and graphene materials of different forms with tunable microstructures. Huang hopes that GO dough’s ease of use could help graphene meet its much-anticipated potential as a super material.
“My dream is to turn graphene-based sheets into a widely accessible, readily usable engineering material, just like plastic, glass and steel,” Huang said. “I hope GO dough can help inspire new uses of graphene-based materials, just like how play dough can inspire young children’s imagination and creativity.”
This work was mainly supported by the Office of Naval Research (ONR N000141612838).
####
For more information, please click here
Contacts:
Amanda Morris
847-467-6790
Copyright © Northwestern University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||