MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers make liquid crystals do the twist: UMD engineers and scientists measure previously unexamined tiny force

Abstract:
Researchers from the University of Maryland have for the first time measured an effect that was predicted more than 40 years ago, called the Casimir torque.

Researchers make liquid crystals do the twist: UMD engineers and scientists measure previously unexamined tiny force

College Park, MD | Posted on December 21st, 2018

When placed together in a vacuum less than the diameter of a bacterium (one micron) apart, two pieces of metal attract each other. This is called the Casimir effect. The Casimir torque -- a related phenomenon that is caused by the same quantum electromagnetic effects that attract the materials -- pushes the materials into a spin. Because it is such a tiny effect, the Casimir torque has been difficult to study. The research team, which includes members from UMD's departments of electrical and computer engineering and physics and Institute for Research in Electronics and Applied Physics, has built an apparatus to measure the decades-old prediction of this phenomenon and published their results in the December 20th issue of the journal Nature.

"This is an interesting situation where industry is using something because it works, but the mechanism is not well-understood," said Jeremy Munday, the leader of the research. "For LCD displays, for example, we know how to create twisted liquid crystals, but we don't really know why they twist. Our study proves that the Casimir torque is a crucial component of liquid crystal alignment. It is the first to quantify the contribution of the Casimir effect, but is not the first to prove that it contributes."

The device places a liquid crystal just tens of nanometers from a solid crystal. With a polarizing microscope, the researchers then observed how the liquid crystal twists to match the solid's crystalline axis.

The team used liquid crystals because they are very sensitive to external forces and can twist the light that passes through them. Under the microscope, each imaged pixel is either light or dark depending on how twisted the liquid crystal layer is. In the experiment, a faint change in the brightness of a liquid crystal layer allowed the research team to characterize the liquid crystal twist and the torque that caused it.

The Casimir effect could make nanoscale parts move and can be used to invent new nanoscale devices, such as actuators or motors.

"Think of any machine that requires a torque or twist to be transmitted: driveshafts, motors, etc.," said Munday. "The Casimir torque can do this on a nanoscale."

Knowing the amount of Casimir torque in a system can also help researchers understand the motions of nanoscale parts powered by the Casimir effect.

The team tested a few different types of solids to measure their Casimir torques, and found that each material has its own unique signature of Casimir torque.

The measurement devices were built in UMD's Fab Lab, a shared user facility and cleanroom housing tools to make nanoscale devices.

In the past, the researchers also made the first measurements of a repulsive Casimir force and a measurement of the Casimir force between two spheres. They have also made some predictions that could be confirmed if the current measurement technique can be refined; Munday reports they are testing other materials to control and tailor the torque.

Munday is an associate professor of electrical and computer engineering in UMD's A. James Clark School of Engineering, and his lab is housed in UMD's Institute for Research in Electronics and Applied Physics, which enables interdisciplinary research between its natural science and engineering colleges.

"Experiments like this are helping us better understand and control the quantum vacuum. It's what one might call 'the physics of empty space,' which upon closer examination seems to be not so empty after all," said John Gillaspy, the physics program officer who oversaw NSF funding of the research.

"Classically, the vacuum is really empty -- it is, by definition, the absence of anything," said Gillaspy. "But quantum physics predicts that even the most empty space that one can imagine is filled with 'virtual' particles and fields, quantum fluctuations in pure emptiness that lead to subtle, but very real, effects that can be measured and even exploited to do things that would otherwise be impossible. The universe contains many complicated things, yet there are still unanswered questions about some of the simplest, most fundamental phenomena -- this research may help us to find some of the answers."

####

For more information, please click here

Contacts:
Martha Heil
mjheil@umd.edu
626-354-5613

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum Physics

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Display technology/LEDs/SS Lighting/OLEDs

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Quantum nanoscience

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project