Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CEA-Leti and Silvaco to Develop GAA SPICE Compact Models for Circuit Design and Technology Co-optimization: Project Combines CEA-Leti’s Compact Modeling Expertise And Silvaco’s Extensive Experience in SPICE Compact Model Integration and Extraction

Abstract:
Leti, a research institute of CEA-Tech, and Silvaco Inc., a leading global provider of software, IP and services for designing chips and electronic systems for semiconductor companies, today announced during the IEDM 2018 conference a project to create innovative and unified SPICE compact models for the design of advanced circuits using nanowire and nanosheet technologies.

CEA-Leti and Silvaco to Develop GAA SPICE Compact Models for Circuit Design and Technology Co-optimization: Project Combines CEA-Leti’s Compact Modeling Expertise And Silvaco’s Extensive Experience in SPICE Compact Model Integration and Extraction

San Francisco, CA | Posted on December 3rd, 2018

The new predictive and physical compact model under development, Leti-NSP, builds on Leti’s 15 years of model development, including the popular Leti-UTSOI model for FD-SOI technology. The Leti-NSP compact model uses a novel methodology for the calculation of the surface potential, including quantum confinement. The model is able to handle arbitrary cross-section shapes of stacked planar and vertical GAA MOSFETs (circular, square, rectangular). It provides an excellent tool for design exploration of nanowire and nanosheet device architectures.



This three-year collaboration will make the new device models available to designers through SmartSpiceTM, Silvaco’s high-performance parallel SPICE simulator for use by circuit designers. The corresponding model-parameters extraction flow will be implemented in Utmost IVTM, Silvaco’s database-driven environment for characterizing semiconductor devices, to ensure an accurate fit between simulated and measured device characteristics.



Accuracy of analysis at the nanometer scale is essential for co-optimization of silicon process technology and circuit performance. Besides accurate device characterization and simulation, a complete solution includes TCAD simulation, and 3D parasitic extraction. Silvaco’s partnership with leading research institutions for atomistic TCAD, and its proven in-house extraction solver technology, will provide the most accurate Design Technology Co-Optimization (DTCO) solution for nanometer technologies.



“Over two decades, CEA-Leti and Silvaco have collaborated on design-technology co-optimization, ranging from innovative TCAD simulation to the design of advanced nanoelectronics, and thus expanded and strengthened Silvaco’s suite of tools for designers,” said Emmanuel Sabonnadière, CEA-Leti CEO. “This project continues that partnership, and when these physics-based compact models are made available to designers worldwide, they will be able to evaluate the potential of advanced nanowire-based CMOS technologies under development at CEA-Leti.”



“DTCO, including circuit simulation, is fundamental to the development of electronic devices, and shrinking silicon geometries are placing an even greater premium on accuracy to capture and evaluate all the new physical effects in nanometer design,” said Eric Guichard, vice president of Silvaco's TCAD Division. “Building on past successes of Leti and Silvaco’s collaboration, this project will provide circuit designers and technologists with powerful, advanced design flows that combine CEA-Leti’s physical, predictive, and easy-to-use models with Silvaco’s high-accuracy EDA tools.”

####

About Leti
CEA-Leti, a technology research institute at CEA, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. Leti has launched 60 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.



CEA Tech is the technology research branch of the French Alternative Energies and Atomic Energy Commission (CEA), a key player in innovative R&D, defence & security, nuclear energy, technological research for industry and fundamental science, identified by Thomson Reuters as the second most innovative research organization in the world. CEA Tech leverages a unique innovation-driven culture and unrivalled expertise to develop and disseminate new technologies for industry, helping to create high-end products and provide a competitive edge.

About Silvaco

Silvaco Inc. is a leading EDA tools and semiconductor IP provider used for process and device development for advanced semiconductors, power IC, display and memory design. For over 30 years, Silvaco has enabled its customers to develop next generation semiconductor products in the shortest time with reduced cost. We are a technology company outpacing the EDA industry by delivering innovative smart silicon solutions to meet the world’s ever-growing demand for mobile intelligent computing. The company is headquartered in Santa Clara, California and has a global presence with offices located in North America, Europe, Japan and Asia.

Press/Media Contact:

For more information, please click here

Contacts:
Press Contact

Agency

+33 6 74 93 23 47

Copyright © Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Industrial

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project