Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CEA-Leti and Silvaco to Develop GAA SPICE Compact Models for Circuit Design and Technology Co-optimization: Project Combines CEA-Leti’s Compact Modeling Expertise And Silvaco’s Extensive Experience in SPICE Compact Model Integration and Extraction

Abstract:
Leti, a research institute of CEA-Tech, and Silvaco Inc., a leading global provider of software, IP and services for designing chips and electronic systems for semiconductor companies, today announced during the IEDM 2018 conference a project to create innovative and unified SPICE compact models for the design of advanced circuits using nanowire and nanosheet technologies.

CEA-Leti and Silvaco to Develop GAA SPICE Compact Models for Circuit Design and Technology Co-optimization: Project Combines CEA-Leti’s Compact Modeling Expertise And Silvaco’s Extensive Experience in SPICE Compact Model Integration and Extraction

San Francisco, CA | Posted on December 3rd, 2018

The new predictive and physical compact model under development, Leti-NSP, builds on Leti’s 15 years of model development, including the popular Leti-UTSOI model for FD-SOI technology. The Leti-NSP compact model uses a novel methodology for the calculation of the surface potential, including quantum confinement. The model is able to handle arbitrary cross-section shapes of stacked planar and vertical GAA MOSFETs (circular, square, rectangular). It provides an excellent tool for design exploration of nanowire and nanosheet device architectures.



This three-year collaboration will make the new device models available to designers through SmartSpiceTM, Silvaco’s high-performance parallel SPICE simulator for use by circuit designers. The corresponding model-parameters extraction flow will be implemented in Utmost IVTM, Silvaco’s database-driven environment for characterizing semiconductor devices, to ensure an accurate fit between simulated and measured device characteristics.



Accuracy of analysis at the nanometer scale is essential for co-optimization of silicon process technology and circuit performance. Besides accurate device characterization and simulation, a complete solution includes TCAD simulation, and 3D parasitic extraction. Silvaco’s partnership with leading research institutions for atomistic TCAD, and its proven in-house extraction solver technology, will provide the most accurate Design Technology Co-Optimization (DTCO) solution for nanometer technologies.



“Over two decades, CEA-Leti and Silvaco have collaborated on design-technology co-optimization, ranging from innovative TCAD simulation to the design of advanced nanoelectronics, and thus expanded and strengthened Silvaco’s suite of tools for designers,” said Emmanuel Sabonnadière, CEA-Leti CEO. “This project continues that partnership, and when these physics-based compact models are made available to designers worldwide, they will be able to evaluate the potential of advanced nanowire-based CMOS technologies under development at CEA-Leti.”



“DTCO, including circuit simulation, is fundamental to the development of electronic devices, and shrinking silicon geometries are placing an even greater premium on accuracy to capture and evaluate all the new physical effects in nanometer design,” said Eric Guichard, vice president of Silvaco's TCAD Division. “Building on past successes of Leti and Silvaco’s collaboration, this project will provide circuit designers and technologists with powerful, advanced design flows that combine CEA-Leti’s physical, predictive, and easy-to-use models with Silvaco’s high-accuracy EDA tools.”

####

About Leti
CEA-Leti, a technology research institute at CEA, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. Leti has launched 60 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.



CEA Tech is the technology research branch of the French Alternative Energies and Atomic Energy Commission (CEA), a key player in innovative R&D, defence & security, nuclear energy, technological research for industry and fundamental science, identified by Thomson Reuters as the second most innovative research organization in the world. CEA Tech leverages a unique innovation-driven culture and unrivalled expertise to develop and disseminate new technologies for industry, helping to create high-end products and provide a competitive edge.

About Silvaco

Silvaco Inc. is a leading EDA tools and semiconductor IP provider used for process and device development for advanced semiconductors, power IC, display and memory design. For over 30 years, Silvaco has enabled its customers to develop next generation semiconductor products in the shortest time with reduced cost. We are a technology company outpacing the EDA industry by delivering innovative smart silicon solutions to meet the world’s ever-growing demand for mobile intelligent computing. The company is headquartered in Santa Clara, California and has a global presence with offices located in North America, Europe, Japan and Asia.

Press/Media Contact:

For more information, please click here

Contacts:
Press Contact

Agency

+33 6 74 93 23 47

Copyright © Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project