Home > Press > WSU researchers develop new technique to understand biology at the nanoscale
![]() |
Prashanta Dutta, professor in the School of Mechanical and Materials Engineering |
Abstract:
Washington State University researchers for the first time have shown that they can use electrical fields to gain valuable information about the tiny, floating vesicles that move around in animals and plants and are critically important to many biological functions.
The new technique could make it easier and less expensive for researchers to gain important information about many biological processes, from understanding the spread of infection in people to improving drug delivery techniques.
Led by graduate student Adnan Morshed and Prashanta Dutta, professor in the School of Mechanical and Materials Engineering ( https://mme.wsu.edu ), the work was published in Physical Review Fluids ( https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.3.103702 ) and funded by the National Institute of General Medical Sciences of the National Institutes of Health.
At the basis of much of biology are cells and, at even smaller scales, cell-like bubbles that float around in liquid doing critically important jobs. So, for instance, neurons communicate in our brain through vesicles that carry information and chemicals from one neuron to the next. The HIV virus is another tiny vesicle. Over time, the vesicle carrying HIV changes and becomes stiffer, which indicates that the virus is becoming more infectious.
But studying the properties of these tiny and critically important cellular sacs that travel through organisms in fluids has been difficult, especially when researchers get to the smallest floaters that are 40-100 nanometers in size. To study biological processes at tiny scales, the researchers use atomic force microscopes, which require removing the vesicles from their natural floating homes. The process is expensive, cumbersome and slow. Furthermore, by taking them out of their natural settings, the biological materials also dont necessarily exhibit their natural behavior, said Dutta.
https://youtu.be/p8-lXc8yRaY
The WSU research team has developed a system that uses a microfluidic-based system and electric fields to better understand vesicles. Similar to a grocery store checker who identifies products as they are passed over a scanner, the researchers apply electrical fields in a liquid as the vesicle passes through a narrow pore. Because of the electric field, the vesicle moves, deforms or reacts differently depending on its chemical make-up. In the case of the HIV vesicles, for instance, the researchers should be able to see the electric field affect the stiffer, more infectious vesicle in a different way than a more flexible, less infectious vesicle. For drug delivery, the system could differentiate a vesicle that contains more or less of a drug even if the two cells might look identical under a microscope.
Our system is low-cost and high throughput, said Dutta. We can really scan hundreds of samples at a time.
He added that they can change the speed of the process to allow researchers to more carefully observe property changes.
The researchers developed a model and tested it with synthetic liposomes, tiny sacs that are used for targeted drug delivery. They hope to begin testing the process soon with more realistic biological materials.
See WSU News, https://news.wsu.edu/2018/11/06/new-technique-developed-understand-nanoscale-biology
####
For more information, please click here
Contacts:
Prashanta Dutta, professor, School of Mechanical and Materials Engineering, 509-335-7989,
Tina Hilding, communications director, Voiland College of Engineering and Architecture, 509-335-5095,
Copyright © Washington State Universit
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Cancer
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Synthetic Biology
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Microfluidics/Nanofluidics
Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023
Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Possible Futures
Closing the gaps MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Discoveries
Closing the gaps MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Nanobiotechnology
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |