Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene shows unique potential to exceed bandwidth demands of future telecommunications

Graphene-integrated devices could be the key ingredient in the evolution of 5G, the Internet-of-Things (IoT), and Industry 4.0. The findings were published in Nature Reviews Materials and highlighted on the cover.

CREDIT
Lauren V. Robinson / © Springer Nature Ltd
Graphene-integrated devices could be the key ingredient in the evolution of 5G, the Internet-of-Things (IoT), and Industry 4.0. The findings were published in Nature Reviews Materials and highlighted on the cover. CREDIT Lauren V. Robinson / © Springer Nature Ltd

Abstract:
Researchers within the Graphene Flagship project, one of the biggest research initiatives of the European Commission, showed that integrated graphene-based photonic devices offer a unique solution for the next generation of optical communications. Researchers in the initiative have demonstrated how properties of graphene enable ultra-wide bandwidth communications coupled with low power consumption to radically change the way data is transmitted across the optical communications systems. This could make graphene-integrated devices the key ingredient in the evolution of 5G, the Internet-of-Things (IoT), and Industry 4.0. The findings were published in Nature Reviews Materials and highlighted on the cover. "As conventional semiconductor technologies are approaching their physical limitations we need to explore entirely new technologies to realise our most ambitious visions of a future networked global society," explains Wolfgang Templ, Department Head of Transceiver Research at Nokia Bell Labs in Germany, which is a Graphene Flagship partner. "Graphene promises a significant step in performance of key components for optical and radio communications beyond the performance limits of today's conventional semiconductor-based component technologies."

Graphene shows unique potential to exceed bandwidth demands of future telecommunications

Cambridge, UK | Posted on October 12th, 2018

Paola Galli, Nokia IP and Optical networks Member of Technical Staff, agrees: "Graphene photonics offer a combination of advantages to become the game changer. We need to explore new materials to go beyond the limits of current technologies and meet the capacity needs of future networks."

The Graphene Flagship presents a vision for the future of graphene-based integrated photonics, and provides strategies for improving power consumption, manufacturability and wafer-scale integration. With this new publication, the Graphene Flagship partners also provide a roadmap for graphene-based photonics devices surpassing the technological requirement for the evolution of datacom and telecom markets driven by 5G, IoT, and the Industry 4.0. "Graphene integrated in a photonic circuit is a low cost, scalable technology that can operate fibre links at a very high data rates," said Marco Romagnoli, from Graphene Flagship partner CNIT, the National Interuniversity Consortium for Telecommunications in Italy.

Antonio D'Errico from Graphene Flagship partner Ericsson Research explains how "graphene for photonics has the potential to change the perspective of information and communications technology in a disruptive way." "This paper published on Nature Reviews Materials explains how to enable new feature rich optical networks. I am pleased to say that this fundamental information is now available to anyone interested around the globe," he adds.

This industrial and academic partnership, comprising companies and research centres in five different European countries, has developed a compelling vision for the future of graphene photonic integration. The team involves researchers from CNIT, Ericsson, IMEC, Nokia, Nokia Bell Labs, AMO, ICFO and the University of Cambridge. These collaborations are at the heart of the Graphene Flagship, set up by the European Commission to support the commercialisation of graphene and related materials until 2023. "The Graphene Flagship is a unique ecosystem in which industrial and academic partners work together for a longer period than a normal EU project. This synergy over an enduring term produces unprecedented results both in science and innovation," comments Romagnoli.

"Collaboration between industry and academia is key for explorative work towards entirely new component technology. Research in this phase bears significant risks, so it is important that academic research and industry research labs join the brightest minds to solve the fundamental problems. Industry can give perspective on the relevant research questions for potential in future systems," adds Templ of Nokia Bell Labs. "Thanks to a mutual exchange of information we can then mature the technology and consider all the requirements for a future industrialization and mass production of graphene-based components."

"This case exemplifies the power of graphene technologies to transform cutting edge applications in telecommunications. We already start to see the fruits of the Graphene Flagship investments when moving from materials development towards components and system level integration," explains Kari Hjelt, Head of Innovation for the Graphene Flagship.

Graphene photonics offers advantages in both performance and manufacturing over the state of the art. Graphene can ensure modulation, detection and switching performances meeting all the requirements for the next evolution in photonic device manufacturing. "We aim for highly integrated optical transceivers which will enable ultra-high bitrates well beyond one terabit per second per optical channel. These targeted systems will differentiate from their semiconductor-based forerunners by substantially lower complexity, energy dissipation and form factor going along with a higher flexibility and tunability," explains Templ.

Daniel Neumaier from Graphene Flagship partner AMO GmbH, also leader of the Graphene Flagship Division on Electronics and Photonics Integration, adds: "Optical communication links will become more and more important in 5G for supporting the required high data rates at all nodes. Graphene-based optical components integrated on a silicon platform will be able to deliver both increased performance and a low-cost production process, thus are expected to become key components in the 5G era." "This paper makes a clear case of why an integrated approach of graphene and silicon-based photonics can meet and surpass the foreseeable requirements of the ever-increasing data rates in future telecom systems," says Andrea C. Ferrari, professor at the University of Cambridge, Science and Technology Officer of the Graphene Flagship and Chair of its Management Panel. "The advent of the Internet of Things and the 5G era represent unique opportunities for graphene to demonstrate its ultimate potential," he concludes.

####

About Graphene Flagship
The Graphene Flagship is one of the largest research initiatives of the European Union. With a budget of €1 billion, it represents a new form of joint, coordinated research initiative on an unprecedented scale. The overall goal of the Graphene Flagship is to take graphene and related materials from the realm of academic laboratories into European society, facilitating economic growth and creating new jobs, in the space of ten years. Through a consortium that combines nearly 150 partners, both academic and industrial, the research effort covers the entire value chain, from materials production to components and system integration, and targets several specific goals that exploit the unique properties of graphene and related materials.

For more information, please click here

Contacts:
Fernando Gomollón Bel

44-122-376-2391

Copyright © Graphene Flagship

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Chip-based dispersion compensation for faster fibre internet: SUTD scientists developed a novel CMOS-compatible, slow-light-based transmission grating device for the dispersion compensation of high-speed data, significantly lowering data transmission errors and paving the way for June 30th, 2023

Jobs

Could quantum technology be New Mexico’s next economic boon? Quantum New Mexico Coalition aims to establish state as national hub April 1st, 2022

SEMI Partners with GLOBALFOUNDRIES to Offer Apprenticeship Program Aimed at Building the Electronics Talent Pipeline August 11th, 2020

March 17th, 2020

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) March 29th, 2019

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project