Home > Press > Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles
![]() |
The UPV/EHU's Cell Biology in Environmental Toxicology research group has analysed adult zebrafish to find out the effects that in the long term can be caused by these silver particles present in fresh water CREDIT Egoi Markaida. UPV/EHU |
Abstract:
What stands out among the main conclusions of the study is the fact that the distribution of the metal in the organs of the fish is influenced by the form (soluble or nanoparticles) that the silver takes in the water. At the same time, soluble silver was also found to cause short-term alterations (three days) and nanoparticles longer-term alterations (21 days); and that in both cases the animals had purified themselves of the silver accumulated in their bodies after spending six months in clean waters, although inflammation of the gills was found to remain after being exposed to the metal.
In the study, led by Amaia Orbea, three groups of 50-60 adult zebrafish each were used in three aquaria. Silver nitrate was added to the first tank to produce water-soluble silver; 20-nm silver nanoparticles (NP Ag) were added to the second; clean water was added to the third which was used as the control. The groups in the contaminated tanks remained exposed to both forms of the metal for 21 days before spending a further six months in clean water for the purpose of studying the consequences of long-term exposure to silver. A concentration of metal regarded as environmentally significant was used, in other words, a concentration that could be found in nature, for example at the outfall of wastewater from treatment plants. The accumulation of a substance is the first step for intoxication to take place.
three and 21 days of exposure to silver and after six months in clean water various chemical and biological analyses were carried out on the gills, liver and intestines of the fish. The research team selected the gills because that is the main entry route of the contaminants; the liver because it is the main organ in metabolism and detoxification; and the intestine because the silver nanoparticles can be absorbed through food.
It can be deduced from the analyses that the fish accumulate similar concentrations of metal after being exposed to soluble silver and silver nanoparticles. And that after 6 months in clean water the initial metal concentration levels were recovered. The conclusions differed when the organs of the fish were analysed. The distribution of silver in the liver and intestines depended on the type of metal used in the treatment, but both treatments led to inflammation of the gills of the fish, an effect that remained even after six months in clean water.
Furthermore, the analysis of the transcriptome of the liver revealed a strong impact of exposure to silver. The effect of soluble silver was more intense after three days of exposure when changes were detected in the expression levels of a total of 410 genic sequences. In the case of silver nanoparticles, the alteration was detected 21 days later and affected 799 sequences.
####
For more information, please click here
Contacts:
Matxalen Sotillo
34-688-673-770
Copyright © University of the Basque Country
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Water
Taking salt out of the water equation October 7th, 2022
Safety-Nanoparticles/Risk management
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |