Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers develop microbubble scrubber to destroy dangerous biofilms

Professor of chemical and biomolecular engineering Simon Rogers, left, postdoctoral researchers Jun Pong Park and Yongbeom Seo and professor of chemical and biomolecular engineering Hyunjoon Kong led an international team that developed hydrogen peroxide-bubbling microparticles that may help eradicate dangerous biofilms.

Photo by L. Brian Stauffer
Professor of chemical and biomolecular engineering Simon Rogers, left, postdoctoral researchers Jun Pong Park and Yongbeom Seo and professor of chemical and biomolecular engineering Hyunjoon Kong led an international team that developed hydrogen peroxide-bubbling microparticles that may help eradicate dangerous biofilms. Photo by L. Brian Stauffer

Abstract:
Stiff microbial films often coat medical devices, household items and infrastructure such as the inside of water supply pipes, and can lead to dangerous infections. Researchers have developed a system that harnesses the power of bubbles to propel tiny particles through the surfaces of these tough films and deliver an antiseptic deathblow to the microbes living inside.

Researchers develop microbubble scrubber to destroy dangerous biofilms

Champaign, IL | Posted on September 19th, 2018

Biofilms are slimy colonies of microbes held together by internal scaffolds, clinging to anything they touch. About 80 percent of all medical infections originate from biofilms that invade the inner workings of hospital devices and implants inside patients. Eradication is difficult because traditional disinfectants and antibiotics cannot effectively penetrate a biofilm’s tough surface, the researchers said.

In the journal Applied Materials and Interfaces, a team led by researchers at the University of Illinois at Urbana-Champaign describes how they used diatoms – the tiny skeletons of algae – loaded with an oxygen-generating chemical to destroy microbes.

“Most of us get those black or yellow spots in our showers at home,” said co-author Hyunjoon Kong, a professor of chemical and biomolecular engineering and a Carle Illinois College of Medicine affiliate. “Those spots are biofilms and most of us know it takes a lot of energy to scrub them away. Imagine trying to do this inside the confined space of the tubing of a medical device or implant. It would be very difficult.”

Looking to nature and basic mechanics for a solution, the researchers developed a system that uses naturally abundant diatoms along with hydrogen peroxide and tiny oxygen-generating sheets of the compound manganese oxide.

“We could have fabricated a particle using 3D printers, but luckily nature already provided us with a cheap and abundant option in diatoms,” said co-author and postdoctoral researcher Yongbeom Seo. “The species of diatom we selected are hollow, highly porous and rod-shaped, providing a lot of surface area for the bubbles to form and a channel for the bubbles to escape.”

The chemical reaction between the hydrogen peroxide and manganese oxide nanosheets takes place within the empty space inside the diatom. The result is a flourish of microbubbles that flow through the tiny channel, propelling the rigid diatoms forward with enough force to break up the surface and internal structure of the biofilms, the researchers said.

“We dope the particles with nanosheets of manganese oxide, then mix them with hydrogen peroxide and apply that to the surface of the biofilm,” Kong said. “Once the diatoms break through to the internal structure of the biofilm, they continue to expel bubbles and facilitate the entry of hydrogen peroxide, which is an effective disinfectant against bacteria and fungus.”

The researchers believe that their success is a result of a decision to focus on the mechanical aspects of biofilm destruction, not the chemical aspects of simply killing microbes.

“We have arrived at a mechanistic solution for this problem and the possibilities for this technology are endless,” said co-author Simon Rogers, a professor of chemical and biomolecular engineering. “We are discussing our research with clinicians who have many exciting ideas of how to use this system that we did not even think of originally, such as the removal of dental plaque.”

U. of I. researchers Jiayu Leong, Jun Dong Park, Yu-Tong Hong, Yu-Heng Deng, Vitaliy Dushnov and Joonghui Soh also contributed to this study. Additional co-authors include Sang-Hyon Chu of the National Institute of Aerospace, Cheol Park of the NASA Langley Research Center, Dong Hyun Kim of the Korea Institute of Industrial Technology and Yi Yan-Yang of the Institute of Bioengineering and Nanotechnology in Singapore.

The National Institutes of Health, the National Science Foundation and the Korea Institute of Industrial Technology supported this research.

####

For more information, please click here

Contacts:
LOIS YOKSOULIAN
PHYSICAL SCIENCES EDITOR
217-244-2788


Hyunjoon Kong
217-333-1178

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper “Diatom microbubbler for active biofilm removal in confined spaces” is available online and from the U. of I. News Bureau. DOI: 10.1021/acsami.8b08643:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project