Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers managed to prevent the disappearing of quantum information

Quantum mechanics describes the behaviour of minute physical systems, such as photons. Photons are also used as the quantum-mechanical equivalents to classic bits, qubits. Quantum-mechanical properties, such as superpositions and quantum entanglement, can be utilised in technology, effective calculation, and encrypting messages.
Quantum mechanics describes the behaviour of minute physical systems, such as photons. Photons are also used as the quantum-mechanical equivalents to classic bits, qubits. Quantum-mechanical properties, such as superpositions and quantum entanglement, can be utilised in technology, effective calculation, and encrypting messages.

Abstract:
The properties of quantum mechanics can be utilised, for example, in technology and encrypting messages, but the disadvantage is the occasional disappearing of information. For the first time, a research group consisting of Finnish and Chinese scientists has found a way to fully control the information escaping the qubit.

Researchers managed to prevent the disappearing of quantum information

Turku, Finland | Posted on September 14th, 2018

Quantum mechanics describes the behaviour of minute physical systems, such as photons. Photons are also used as the quantum-mechanical equivalents to classic bits, qubits. Quantum-mechanical properties, such as superpositions and quantum entanglement, can be utilised in technology, effective calculation, and encrypting messages.

- These properties are very fragile and usually disappear rapidly as a result of so-called decoherence and quantum noise. As a result, the information carried by the qubit leaks into the environment and disappears completely. Both in terms of basic research and technological applications, it is vital to understand how quantum information disappears, and to find ways to control the behaviour of quantum systems and prevent the disappearing of information, says University Research Fellow Jyrki Piilo from the Department of Physics and Astronomy of the University of Turku.

For the first time, the research groups of Turku Centre for Quantum Physics at the University of Turku and the University of Science and Technology of China have showed both in theory and experimentally how the information flowing from the qubit into the environment can be controlled. The groups also proved that the disappearing of quantum information can even be prevented in some cases.

- Our work is based on exploring the properties of photons and their careful control in the laboratory. In order to achieve the result, it was crucial to first theoretically understand how to create an adequate connection between the polarisation and frequency of the photon in the beginning, and then implement it in the laboratory using extremely refined and challenging experimental techniques. When the photon serving as the qubit - and its environment - has first been initialised into the right state, it is then possible to arbitrarily control how the information carried by the qubit disappears or is retrieved, and it can even be trapped or protected from disturbances, explains Professor Chuan-Feng Li from the University of Science and Technology of China.

According to Li, the results of the study are significant for basic research and developing quantum technologies.

- Individual photons can now also be used for simulating the behaviour of several other quantum-mechanical systems, including magnetic spin systems. Also, the results provide fundamental information on the behaviour of open quantum systems in different environments. Moreover, the results enable the manufacturing of artificial environments for qubits. These environments are not found elsewhere naturally, but they can be produced in the laboratory, says Piilo.

The researchers from Turku Centre for Quantum Physics at the University of Turku were responsible for the theoretical part of the study, and Professor of Theoretical Physics Sabrina Maniscalco and Doctoral Candidate Henri Lyyra participated in the study alongside Piilo. Professors Chuan-Feng Li and Guang-Can Guo from the University of Science and Technology of China were responsible for the experimental implementation of the study together with their research groups including co-first author Zhao-Di Liu.

####

For more information, please click here

Contacts:
Jyrki Piilo

Copyright © University of Turku

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Quantum Computing

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project