Home > Press > Tiny camera lens may help link quantum computers to network
![]()  | 
| Kai Wang in the lab. CREDIT Lannon Harley, ANU | 
Abstract:
An international team of researchers led by The Australian National University (ANU) has invented a tiny camera lens, which may lead to a device that links quantum computers to an optical fibre network.
Quantum computers promise a new era in ultra-secure networks, artificial intelligence and therapeutic drugs, and will be able to solve certain problems much faster than today's computers.
The unconventional lens, which is 100 times thinner than a human hair, could enable a fast and reliable transfer of quantum information from the new-age computers to a network, once these technologies are fully realised.
The device is made of a silicon film with millions of nano-structures forming a metasurface, which can control light with functionalities outperforming traditional systems.
Associate Professor Andrey Sukhorukov said the metasurface camera lens was highly transparent, thereby enabling efficient transmission and detection of information encoded in quantum light.
"It is the first of its kind to image several quantum particles of light at once, enabling the observation of their spooky behaviour with ultra-sensitive cameras," said Associate Professor Sukhorukov, who led the research with a team of scientists at the Nonlinear Physics Centre of the ANU Research School of Physics and Engineering.
Kai Wang, a PhD scholar at the Nonlinear Physics Centre who worked on all aspects of the project, said one challenge was making portable quantum technologies.
"Our device offers a compact, integrated and stable solution for manipulating quantum light. It is fabricated with a similar kind of manufacturing technique used by Intel and NVIDIA for computer chips." he said.
###
The research was conducted at the Nonlinear Physics Centre laboratories, where staff and postgraduate scholars developed and trialled the metasurface camera lens in collaboration with researchers at the Oak Ridge National Laboratory in the United States and the National Central University in Taiwan.
####
For more information, please click here
Contacts:
Associate Professor Andrey Sukhorukov 
Nonlinear Physics Centre, Research School of Physics and Engineering 
ANU College of Science 
E: 
Please note that Associate Professor Sukhorukov is in Italy.
Kai Wang 
PhD scholar, Nonlinear Physics Centre, Research School of Physics and Engineering 
ANU College of Science 
E:  
T: +61 424 106 515
For media assistance, contact the ANU media hotline on +612 6125 7979 or email the ANU Media Team at 
Copyright © Australian National University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links | 
 The research is published in Science:
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
    Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Quantum communication
    Next-generation quantum communication October 3rd, 2025
Quantum Physics
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Imaging
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
    Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
    First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
Possible Futures
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Quantum Computing
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
    Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Optical computing/Photonic computing
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
    Programmable electron-induced color router array May 14th, 2025
    Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
    Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Photonics/Optics/Lasers
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Research partnerships
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||